skip to main content


Title: Controllable quantum point junction on the surface of an antiferromagnetic topological insulator
Abstract

Engineering and manipulation of unidirectional channels has been achieved in quantum Hall systems, leading to the construction of electron interferometers and proposals for low-power electronics and quantum information science applications. However, to fully control the mixing and interference of edge-state wave functions, one needs stable and tunable junctions. Encouraged by recent material candidates, here we propose to achieve this using an antiferromagnetic topological insulator that supports two distinct types of gapless unidirectional channels, one from antiferromagnetic domain walls and the other from single-height steps. Their distinct geometric nature allows them to intersect robustly to form quantum point junctions, which then enables their control by magnetic and electrostatic local probes. We show how the existence of stable and tunable junctions, the intrinsic magnetism and the potential for higher-temperature performance make antiferromagnetic topological insulators a promising platform for electron quantum optics and microelectronic applications.

 
more » « less
Award ID(s):
1954856 1941569
NSF-PAR ID:
10253193
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogen, the smallest and most abundant element in nature, can be efficiently incorporated within a solid and drastically modify its electronic and structural state. In most semiconductors interstitial hydrogen binds to defects and is known to be amphoteric, namely it can act either as a donor (H+) or an acceptor (H) of charge, nearly always counteracting the prevailing conductivity type. Here we demonstrate that hydrogenation resolves an outstanding challenge in chalcogenide classes of three-dimensional (3D) topological insulators and magnets — the control of intrinsic bulk conduction that denies access to quantum surface transport, imposing severe thickness limits on the bulk. With electrons donated by a reversible binding of H+ions to Te(Se) chalcogens, carrier densities are reduced by over 1020cm−3, allowing tuning the Fermi level into the bulk bandgap to enter surface/edge current channels without altering carrier mobility or the bandstructure. The hydrogen-tuned topological nanostructures are stable at room temperature and tunable disregarding bulk size, opening a breadth of device platforms for harnessing emergent topological states.

     
    more » « less
  2. Key points

    Gap junctions formed by different connexins are expressed throughout the body and harbour unique channel properties that have not been fully defined mechanistically.

    Recent structural studies by cryo‐electron microscopy have produced high‐resolution models of the related but functionally distinct lens connexins (Cx50 and Cx46) captured in a stable open state, opening the door for structure–function comparison.

    Here, we conducted comparative molecular dynamics simulation and electrophysiology studies to dissect the isoform‐specific differences in Cx46 and Cx50 intercellular channel function.

    We show that key determinants Cx46 and Cx50 gap junction channel open stability and unitary conductance are shaped by structural and dynamic features of their N‐terminal domains, in particular the residue at the 9th position and differences in hydrophobic anchoring sites.

    The results of this study establish the open state Cx46/50 structural models as archetypes for structure–function studies targeted at elucidating the mechanism of gap junction channels and the molecular basis of disease‐causing variants.

    Abstract

    Connexins form intercellular communication channels, known as gap junctions (GJs), that facilitate diverse physiological roles, from long‐range electrical and chemical coupling to coordinating development and nutrient exchange. GJs formed by different connexin isoforms harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies on Cx46 and Cx50 defined a novel and stable open state and implicated the amino‐terminal (NT) domain as a major contributor for isoform‐specific functional differences between these closely related lens connexins. To better understand these differences, we constructed models corresponding to wildtype Cx50 and Cx46 GJs, NT domain swapped chimeras, and point variants at the 9th residue for comparative molecular dynamics (MD) simulation and electrophysiology studies. All constructs formed functional GJ channels, except the chimeric Cx46‐50NT variant, which correlated with an introduced steric clash and increased dynamical behaviour (instability) of the NT domain observed by MD simulation. Single channel conductance correlated well with free‐energy landscapes predicted by MD, but resulted in a surprisingly greater degree of effect. Additionally, we observed significant effects on transjunctional voltage‐dependent gating (Vjgating) and/or open state dwell times induced by the designed NT domain variants. Together, these studies indicate intra‐ and inter‐subunit interactions involving both hydrophobic and charged residues within the NT domains of Cx46 and Cx50 play important roles in defining GJ open state stability and single channel conductance, and establish the open state Cx46/50 structural models as archetypes for structure–function studies targeted at elucidating GJ channel mechanisms and the molecular basis of cataract‐linked connexin variants.

     
    more » « less
  3. Abstract

    Nonlinear photocurrent in time-reversal invariant noncentrosymmetric systems such as ferroelectric semimetals sparked tremendous interest of utilizing nonlinear optics to characterize condensed matter with exotic phases. Here we provide a microscopic theory of two types of second-order nonlinear direct photocurrents, magnetic shift photocurrent (MSC) and magnetic injection photocurrent (MIC), as the counterparts of normal shift current (NSC) and normal injection current (NIC) in time-reversal symmetry and inversion symmetry broken systems. We show that MSC is mainly governed by shift vector and interband Berry curvature, and MIC is dominated by absorption strength and asymmetry of the group velocity difference at time-reversed ±kpoints. Taking$${\cal{P}}{\cal{T}}$$PT-symmetric magnetic topological quantum material bilayer antiferromagnetic (AFM) MnBi2Te4as an example, we predict the presence of large MIC in the terahertz (THz) frequency regime which can be switched between two AFM states with time-reversed spin orderings upon magnetic transition. In addition, external electric field breaks$${\cal{P}}{\cal{T}}$$PTsymmetry and enables large NSC response in bilayer AFM MnBi2Te4, which can be switched by external electric field. Remarkably, both MIC and NSC are highly tunable under varying electric field due to the field-induced large Rashba and Zeeman splitting, resulting in large nonlinear photocurrent response down to a few THz regime, suggesting bilayer AFM-zMnBi2Te4as a tunable platform with rich THz and magneto-optoelectronic applications. Our results reveal that nonlinear photocurrent responses governed by NSC, NIC, MSC, and MIC provide a powerful tool for deciphering magnetic structures and interactions which could be particularly fruitful for probing and understanding magnetic topological quantum materials.

     
    more » « less
  4. Abstract

    Superconducting radio‐frequency (SRF) resonators are critical components for particle accelerator applications, such as free‐electron lasers, and for emerging technologies in quantum computing. Developing advanced materials and their deposition processes to produce RF superconductors that yield nΩ surface resistances is a key metric for the wider adoption of SRF technology. Here, ZrNb(CO) RF superconducting films with high critical temperatures (Tc) achieved for the first time under ambient pressure are reported. The attainment of aTcnear the theoretical limit for this material without applied pressure is promising for its use in practical applications. A range ofTc, likely arising from Zr doping variation, may allow a tunable superconducting coherence length that lowers the sensitivity to material defects when an ultra‐low surface resistance is required. The ZrNb(CO) films are synthesized using a low‐temperature (100 – 200 °C) electrochemical recipe combined with thermal annealing. The phase transformation as a function of annealing temperature and time is optimized by the evaporated Zr‐Nb diffusion couples. Through phase control, one avoids hexagonal Zr phases that are equilibrium‐stable but degradeTc. X‐ray and electron diffraction combined with photoelectron spectroscopy reveal a system containing cubic β‐ZrNb mixed with rocksalt NbC and low‐dielectric‐loss ZrO2. Proof‐of‐concept RF performance of ZrNb(CO) on an SRF sample test system is demonstrated. BCS resistance trends lower than reference Nb, while quench fields occur at approximately 35 mT. The results demonstrate the potential of ZrNb(CO) thin films for particle accelerators and other SRF applications.

     
    more » « less
  5. Abstract

    The Andreev bound state spectra of multi-terminal Josephson junctions form an artificial band structure, which is predicted to host tunable topological phases under certain conditions. However, the number of conductance modes between the terminals of a multi-terminal Josephson junction must be few in order for this spectrum to be experimentally accessible. In this work, we employ a quantum point contact geometry in three-terminal Josephson devices to demonstrate independent control of conductance modes between each pair of terminals and access to the single-mode regime coexistent with the presence of superconducting coupling. These results establish a full platform on which to realize tunable Andreev bound state spectra in multi-terminal Josephson junctions.

     
    more » « less