skip to main content

Title: A Simulation-based Approach for Large-scale Evacuation Planning
Abstract—Evacuation planning methods aim to design routes and schedules to relocate people to safety in the event of natural or man-made disasters. The primary goal is to minimize casualties which often requires the evacuation process to be completed as soon as possible. In this paper, we present QueST, an agent-based discrete event queuing network simulation system, and STEERS, an iterative routing algorithm that uses QueST for designing and evaluating large scale evacuation plans in terms of total egress time and congestion/bottlenecks occurring during evacuation. We use the Houston Metropolitan Area, which consists of nine US counties and spans an area of 9,444 square miles as a case study, and compare the performance of STEERS with two existing route planning methods. We find that STEERS is either better or comparable to these methods in terms of total evacuation time and congestion faced by the evacuees. We also analyze the large volume of data generated by the simulation process to gain insights about the scenarios arising from following the evacuation routes prescribed by these methods.
; ; ; ;
Award ID(s):
1633028 1916805 1918656 2027541
Publication Date:
Journal Name:
IEEE International Conference on Big Data
Page Range or eLocation-ID:
1338 to 1345
Sponsoring Org:
National Science Foundation
More Like this
  1. The State of Florida is significantly vulnerable to catastrophic hurricanes that cause widespread infrastructural damage and claim lives annually. In 2017, Hurricane Irma, a Category 4 hurricane, took on the entirety of Florida, causing the state’s largest evacuation ever as 7 million residents fled the hurricane. Floridians fleeing the hurricane faced the unique challenge of where to go, since Irma made an unusual landfall from the south, enveloping the entire state, forcing evacuees to drive farther north, and creating traffic jams along Florida’s evacuation routes that were worse than during any other hurricane in Florida's history. This study aimed tomore »assess the spatiotemporal traffic impacts of Irma on Florida’s major highways based on real-time traffic data before, during, and after the hurricane made landfall. First, we conducted a time-series-based analysis to evaluate the temporal evacuation patterns of this large-scale evacuation. Second, we developed a metric, namely the congestion index (CI), to assess the spatiotemporal evacuation patterns on I-95, I-75, I-10, I-4, and turnpike (SR-91) highways with a focus on both evacuation and returning traffic. Third, we employed a geographic information system-based analysis to visually illustrate the CI values of corresponding highway sections with respect to different dates and times. Findings clearly showed that imperfect forecasts and the uncertainty surrounding Irma’s predicted path resulted in high levels of congestion and severe delays on Florida’s major evacuation routes.« less
  2. The total cost for weather-related disasters in the US increases over time, and hurricanes usually create the most damage. One of the challenges, which is present in almost every major hurricane event, is the patient evacuation mission. We propose a comprehensive modeling and methodological framework for a large-scale patient evacuation problem when an area is faced with a forecasted disaster such as a hurricane. In this work, we integrate a hurricane scenario generation scheme using publicly available surge level forecasting software and a scenario-based stochastic integer program to make decisions on patient movements, staging area locations and positioning of emergencymore »medical vehicles with an objective of minimizing the total expected cost of evacuation and the setup cost of staging areas. The hurricane scenario generation scheme incorporates the uncertainties in the hurricane intensity, direction, forward speed and tide level. To demonstrate the modeling approach, we apply real-world data from the Southeast Texas region in our experiments. We highlight the importance of operation time limits, the number of available resources and an accurate forecast on forthcoming hurricanes in determining the locations of staging areas and patient evacuation decisions.« less
  3. Urban public transit planning is crucial in reducing traffic congestion and enabling green transportation. However, there is no systematic way to integrate passengers' personal preferences in planning public transit routes and schedules so as to achieve high occupancy rates and efficiency gain of ride-sharing. In this paper, we take the first step tp exact passengers' preferences in planning from history public transit data. We propose a data-driven method to construct a Markov decision process model that characterizes the process of passengers making sequential public transit choices, in bus routes, subway lines, and transfer stops/stations. Using the model, we integrate softmaxmore »policy iteration into maximum entropy inverse reinforcement learning to infer the passenger's reward function from observed trajectory data. The inferred reward function will enable an urban planner to predict passengers' route planning decisions given some proposed transit plans, for example, opening a new bus route or subway line. Finally, we demonstrate the correctness and accuracy of our modeling and inference methods in a large-scale (three months) passenger-level public transit trajectory data from Shenzhen, China. Our method contributes to smart transportation design and human-centric urban planning.« less
  4. Fixed-route bus systems are an important part of the urban transportation mix. A considerable disadvantage of buses is their slow speed, which is in part due to frequent stops, but also due to the lack of segregation from other vehicles in traffic. As such, assessing bus routes is an important aspect of route planning, scheduling, and the creation of dedicated bus lanes. In this work, we use bus tracking data from the Washington Metropolitan Area Transit Authority to discover speed patterns in relation to bus stops throughout the day. This gives us an insight on whether the routes are affectedmore »by traffic congestion or more random events such as traffic lights. We first employ a macro-level qualitative analysis to identify patterns across different trips. A micro-level quantitative analysis further refines this approach by analyzing the speed patterns around bus stops. Our analysis is based on bus odometer data, which is a one-dimensional representation of trips that has considerable accuracy when looking at speed patterns. Exploiting route metadata in relation to stops, we use Dynamic Time Warping to cluster different stops based on their speed profiles throughout the day. The clustering can be used to generate a spatiotemporal route profile and we show how such a profile provides actionable intelligence for route planning purposes.« less
  5. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describemore »our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997.« less