skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Seasonal Forecasts for the Fire Season in Interior Alaska
Abstract In this study, seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), are compared with station observations to assess their usefulness in producing accurate buildup index (BUI) forecasts for the fire season in Interior Alaska. These comparisons indicate that the CFSv2 June–July–August (JJA) climatology (1994–2017) produces negatively biased BUI forecasts because of negative temperature and positive precipitation biases. With quantile mapping (QM) correction, the temperature and precipitation forecasts better match the observations. The long-term JJA mean BUI improves from 12 to 42 when computed using the QM-corrected forecasts. Further postprocessing of the QM-corrected BUI forecasts using the quartile classification method shows anomalously high values for the 2004 fire season, which was the worst on record in terms of the area burned by wildfires. These results suggest that the QM-corrected CFSv2 forecasts can be used to predict extreme fire events. An assessment of the classified BUI ensemble members at the subseasonal scale shows that persistently occurring BUI forecasts exceeding 150 in the cumulative drought season can be used as an indicator that extreme fire events will occur during the upcoming season. This study demonstrates the ability of QM-corrected CFSv2 forecasts to predict the potential fire season in advance. This information could, therefore, assist fire managers in resource allocation and disaster response preparedness.  more » « less
Award ID(s):
1757348
PAR ID:
10253419
Author(s) / Creator(s):
Date Published:
Journal Name:
Weather and Forecasting
Volume:
36
Issue:
2
ISSN:
0882-8156
Page Range / eLocation ID:
601 to 613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In groundwater-limited settings, such as Puerto Rico and other Caribbean islands, societal, ecological, and agricultural water needs depend on regular rainfall. Though long-range numerical weather predication models explicitly predict precipitation, such quantitative precipitation forecasts (QPF) critically failed to detect the historic 2015 Caribbean drought. Consequently, this work examines the feasibility of developing a drought early warning tool using the Gálvez–Davison index (GDI), a tropical convective potential index, derived from the Climate Forecast System, version 2 (CFSv2). Drought forecasts are focused on Puerto Rico’s early rainfall season (ERS; April–July), which is susceptible to intrusions of strongly stable Saharan air and represents the largest source of hydroclimatic variability for the island. A fully coupled atmosphere–ocean–land model, the CFSv2 can plausibly detect the transatlantic advection of low-GDI Saharan air with multimonth lead times. The mean ERS GDI is calculated from semidaily CFSv2 forecasts beginning 1 January of each year between 2012 and 2018 and monitored as the initialization approaches 1 April. The CFSv2 demonstrates a broad region of statistically significant correlations with observed GDI across the eastern Caribbean up to 30 days prior to the ERS. During 2015, the CFSv2 forecast a low-GDI tongue extending across the Atlantic toward the Caribbean with 60–90 days lead time and placed Puerto Rico’s 2015 ERS beneath the 15th percentile of all 1982–2018 ERS forecasts with up to 30 days lead time. A preliminary GDI-based QPF tool tested herein is a statistically significant improvement over climatology for the driest years. 
    more » « less
  2. Abstract. Wildfire is a critical ecological disturbance in terrestrial ecosystems. Australia, in particular, has experienced increasingly large and severe wildfires over the past 2 decades, while globally fire risk is expected to increase significantly due to projected increases in extreme weather and drought conditions. Therefore, understanding and predicting fire severity is critical for evaluating current and future impacts of wildfires on ecosystems. Here, we first introduce a vegetation-type-specific fire severity classification applied to satellite imagery, which is further used to predict fire severity during the fire season (November to March) using antecedent drought conditions, fire weather (i.e. wind speed, air temperature, and atmospheric humidity), and topography. Compared to fire severity maps from the fire extent and severity mapping (FESM) dataset, we find that fire severity prediction results using the vegetation-type-specific thresholds show good performance in extreme- and high-severity classification, with accuracies of 0.64 and 0.76, respectively. Based on a “leave-one-out” cross-validation experiment, we demonstrate high accuracy for both the fire severity classification and the regression using a suite of performance metrics: the determination coefficient (R2), mean absolute error (MAE), and root-mean-square error (RMSE), which are 0.89, 0.05, and 0.07, respectively. Our results also show that the fire severity prediction results using the vegetation-type-specific thresholds could better capture the spatial patterns of fire severity and have the potential to be applicable for seasonal fire severity forecasts due to the availability of seasonal forecasts of the predictor variables. 
    more » « less
  3. null (Ed.)
    Abstract Skillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States (US). We use a leading principal component of US soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP’s Climate Forecast System version 2 (CFSv2) at weeks 3-4 in the eastern US. It is found that the North Pacific SST anomalies persist several weeks and are associated with a persistent wave train pattern (WTZ500), which leads to increased occurrences of blocking and extreme temperature over the eastern US. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and decrease in latent heat flux, which may help maintain the overlying anticyclone. The clear sky conditions associated with blocking anticyclones further decrease soil moisture conditions and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, reservoir operation, and provide mitigation of impacts from extreme heat events. 
    more » « less
  4. Abstract The increasing complexity and impacts of fire seasons in the United States have prompted efforts to improve early warning systems for wildland fire management. Outlooks of potential fire activity at lead‐times of several weeks can help in wildland fire resource allocation as well as complement short‐term meteorological forecasts for ongoing fire events. Here, we describe an experimental system for developing downscaled ensemble‐based subseasonal forecasts for the contiguous US using NCEP's operational Climate Forecast System version 2 model. These forecasts are used to calculate forecasted fire danger indices from the United States (US) National Fire Danger Rating System in addition to forecasts of evaporative demand. We further illustrate the skill of subseasonal forecasts on weekly timescales using hindcasts from 2011 to 2021. Results show that while forecast skill degrades with time, statistically significant week 3 correlative skill was found for 76% and 30% of the contiguous US for Energy Release Component and evaporative demand, respectively. These results highlight the potential value of experimental subseasonal forecasts in complementing existing information streams in weekly‐to‐monthly fire business decision making for suppression‐based decisions and geographic reallocation of resources during the fire season, as well for proactive fire management actions outside of the core fire season. 
    more » « less
  5. null (Ed.)
    The late-season extreme fire activity in Southcentral Alaska during 2019 was highly unusual and consequential. Firefighting operations had to be extended by a month in 2019 due to the extreme conditions of hot summer temperature and prolonged drought. The ongoing fires created poor air quality in the region containing most of Alaska’s population, leading to substantial impacts to public health. Suppression costs totaled over $70 million for Southcentral Alaska. This study’s main goals are to place the 2019 season into historical context, provide an attribution analysis, and assess future changes in wildfire risk in the region. The primary tools are meteorological observations and climate model simulations from the NCAR CESM Large Ensemble (LENS). The 2019 fire season in Southcentral Alaska included the hottest and driest June–August season over the 1979–2019 period. The LENS simulation analysis suggests that the anthropogenic signal of increased fire risk had not yet emerged in 2019 because of the CESM’s internal variability, but that the anthropogenic signal will emerge by the 2040–2080 period. The effect of warming temperatures dominates the effect of enhanced precipitation in the trend towards increased fire risk. 
    more » « less