Abstract Let $$E$$ be an elliptic curve defined over $${\mathbb{Q}}$$ of conductor $$N$$, $$p$$ an odd prime of good ordinary reduction such that $E[p]$ is an irreducible Galois module, and $$K$$ an imaginary quadratic field with all primes dividing $Np$ split. We prove Iwasawa main conjectures for the $${\mathbb{Z}}_{p}$$-cyclotomic and $${\mathbb{Z}}_{p}$$-anticyclotomic deformations of $$E$$ over $${\mathbb{Q}}$$ and $K,$ respectively, dispensing with any of the ramification hypotheses on $E[p]$ in previous works. The strategy employs base change and the two-variable zeta element associated to $$E$$ over $$K$$, via which the sought after main conjectures are deduced from Wan’s divisibility towards a three-variable main conjecture for $$E$$ over a quartic CM field containing $$K$$ and certain Euler system divisibilities. As an application, we prove cases of the two-variable main conjecture for $$E$$ over $$K$$. The aforementioned one-variable main conjectures imply the $$p$$-part of the conjectural Birch and Swinnerton-Dyer formula for $$E$$ if $$\operatorname{ord}_{s=1}L(E,s)\leq 1$$. They are also an ingredient in the proof of Kolyvagin’s conjecture and its cyclotomic variant in our joint work with Grossi [1].
more »
« less
LARGE FIELDS IN DIFFERENTIAL GALOIS THEORY
We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over $$\mathbb{Q}$$ . More generally, we show that over such a field, every split differential embedding problem can be solved. In particular, we solve the inverse differential Galois problem and all split differential embedding problems over $$\mathbb{Q}_{p}(x)$$ .
more »
« less
- PAR ID:
- 10253550
- Date Published:
- Journal Name:
- Journal of the Institute of Mathematics of Jussieu
- ISSN:
- 1474-7480
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We study the inverse Jacobian problem for the case of Picard curves over $${\mathbb {C}}$$ C . More precisely, we elaborate on an algorithm that, given a small period matrix $$\varOmega \in {\mathbb {C}}^{3\times 3}$$ Ω ∈ C 3 × 3 corresponding to a principally polarized abelian threefold equipped with an automorphism of order 3, returns a Legendre–Rosenhain equation for a Picard curve with Jacobian isomorphic to the given abelian variety. Our method corrects a formula obtained by Koike–Weng (Math Comput 74(249):499–518, 2005) which is based on a theorem of Siegel. As a result, we apply the algorithm to obtain equations of all the isomorphism classes of Picard curves with maximal complex multiplication by the maximal order of the sextic CM-fields with class number at most $$4$$ 4 . In particular, we obtain the complete list of maximal CM Picard curves defined over $${\mathbb {Q}}$$ Q . In the appendix, Vincent gives a correction to the generalization of Takase’s formula for the inverse Jacobian problem for hyperelliptic curves given in [Balakrishnan–Ionica–Lauter–Vincent, LMS J. Comput. Math., 19(suppl. A):283-300, 2016].more » « less
-
We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$ -arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $$p$$ . This is a generalization to $$\text{GL}_{3}$$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $$n$$ -dimensional Galois representations’, Duke Math. J. 149 (1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212 (1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $$\text{GL}_{3}(\mathbb{F}_{q})$$ .more » « less
-
null (Ed.)Following a suggestion of Peter Scholze, we construct an action of G m ^ \widehat {\mathbb {G}_m} on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the p p -adic modular curve whose ring of functions is Serre’s space of p p -adic modular functions. This action is a local, p p -adic analog of a global, archimedean action of the circle group S 1 S^1 on the lattice-unstable locus of the modular curve over C \mathbb {C} . To construct the G m ^ \widehat {\mathbb {G}_m} -action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates q q ; along the way we also prove a natural generalization of Dwork’s equation τ = log q \tau =\log q for extensions of Q p / Z p \mathbb {Q}_p/\mathbb {Z}_p by μ p ∞ \mu _{p^\infty } valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of G m ^ \widehat {\mathbb {G}_m} integrates the differential operator θ \theta coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and p p -adic L L -functions.more » « less
-
Let ρ ¯ : G Q → GSp 4 ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the 3 3 -torsion of a principally polarized abelian surface A / Q A/\mathbf {Q} . We prove that the moduli space A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces B / Q B/\mathbf {Q} admitting a symplectic isomorphism B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over Q \mathbf {Q} when ρ ¯ \overline {\rho } is surjective, even though it is both rational over C \mathbf {C} and unirational over Q \mathbf {Q} via a map of degree 6 6 .more » « less
An official website of the United States government

