skip to main content


Title: Surface Functionalization of Black Phosphorus with Nitrenes: Identification of P=N Bonds by Using Isotopic Labeling
Abstract

Surface functionalization of two‐dimensional crystals is a key path to tuning their intrinsic physical and chemical properties. However, synthetic protocols and experimental strategies to directly probe chemical bonding in modified surfaces are scarce. Introduced herein is a mild, surface‐specific protocol for the surface functionalization of few‐layer black phosphorus nanosheets using a family of photolytically generated nitrenes (RN) from the corresponding azides. By embedding spectroscopic tags in the organic backbone, a multitude of characterization techniques are employed to investigate in detail the chemical structure of the modified nanosheets, including vibrational, X‐ray photoelectron, solid state31P NMR, and UV‐vis spectroscopy. To directly probe the functional groups introduced on the surface, R fragments were selected such that in conjunction with vibrational spectroscopy,15N‐labeling experiments, and DFT methods, diagnostic P=N vibrational modes indicative of iminophosphorane units on the nanosheet surface could be conclusively identified.

 
more » « less
Award ID(s):
1719797
NSF-PAR ID:
10256761
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
16
ISSN:
1433-7851
Format(s):
Medium: X Size: p. 9127-9134
Size(s):
["p. 9127-9134"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Surface functionalization of two‐dimensional crystals is a key path to tuning their intrinsic physical and chemical properties. However, synthetic protocols and experimental strategies to directly probe chemical bonding in modified surfaces are scarce. Introduced herein is a mild, surface‐specific protocol for the surface functionalization of few‐layer black phosphorus nanosheets using a family of photolytically generated nitrenes (RN) from the corresponding azides. By embedding spectroscopic tags in the organic backbone, a multitude of characterization techniques are employed to investigate in detail the chemical structure of the modified nanosheets, including vibrational, X‐ray photoelectron, solid state31P NMR, and UV‐vis spectroscopy. To directly probe the functional groups introduced on the surface, R fragments were selected such that in conjunction with vibrational spectroscopy,15N‐labeling experiments, and DFT methods, diagnostic P=N vibrational modes indicative of iminophosphorane units on the nanosheet surface could be conclusively identified.

     
    more » « less
  2. Abstract

    2D nanomaterials have attracted broad interest in the field of biomedicine owing to their large surface area, high drug‐loading capacity, and excellent photothermal conversion. However, few studies report their “enzyme‐like” catalytic performance because it is difficult to prepare enzymatic nanosheets with small size and ultrathin thickness by current synthetic protocols. Herein, a novel one‐step wet‐chemical method is first proposed for protein‐directed synthesis of 2D MnO2nanosheets (M‐NSs), in which the size and thickness can be easily adjusted by the protein dosage. Then, a unique sono‐chemical approach is introduced for surface functionalization of the M‐NSs with high dispersity/stability as well as metal‐cation‐chelating capacity, which can not only chelate64Cu radionuclides for positron emission tomography (PET) imaging, but also capture the potentially released Mn2+for enhanced biosafety. Interestingly, the resulting M‐NS exhibits excellent enzyme‐like activity to catalyze the oxidation of glucose, which represents an alternative paradigm of acute glucose oxidase for starving cancer cells and sensitizing them to thermal ablation. Featured with outstanding phototheranostic performance, the well‐designed M‐NS can achieve effective photoacoustic‐imaging‐guided synergistic starvation‐enhanced photothermal therapy. This study is expected to establish a new enzymatic phototheranostic paradigm based on small‐sized and ultrathin M‐NSs, which will broaden the application of 2D nanomaterials.

     
    more » « less
  3. Abstract Monolayer molybdenum disulfide (MoS 2 ) is one of the most studied two-dimensional (2D) transition metal dichalcogenides that is being investigated for various optoelectronic properties, such as catalysis, sensors, photovoltaics, and batteries. One such property that makes this material attractive is the ease in which 2D MoS 2 can be converted between the semiconducting (2H) and metallic/semi-metallic (1T/1T′) phases or heavily n-type doped 2H phase with ion intercalation, strain, or excess negative charge. Using n -butyl lithium (BuLi) immersion treatments, we achieve 2H MoS 2 monolayers that are heavily n-type doped with shorter immersion times (10–120 mins) or conversion to the 1T/1T′ phase with longer immersion times (6–24 h); however, these doped/converted monolayers are not stable and promptly revert back to the initial 2H phase upon exposure to air. To overcome this issue and maintain the modification of the monolayer MoS 2 upon air exposure, we use BuLi treatments plus surface functionalization p-(CH 3 CH 2 ) 2 NPh-MoS 2 (Et 2 N-MoS 2 )—to maintain heavily n-type doped 2H phase or the 1T/1T′ phase, which is preserved for over two weeks when on indium tin oxide or sapphire substrates. We also determine that the low sheet resistance and metallic-like properties correlate with the BuLi immersion times. These modified MoS 2 materials are characterized with confocal Raman/photoluminescence, absorption, x-ray photoelectron spectroscopy as well as scanning Kelvin probe microscopy, scanning electrochemical microscopy, and four-point probe sheet resistance measurements to quantify the differences in the monolayer optoelectronic properties. We will demonstrate chemical methodologies to control the modified monolayer MoS 2 that likely extend to other 2D transition metal dichalcogenides, which will greatly expand the uses for these nanomaterials. 
    more » « less
  4. Neurotransmitters are small molecules involved in neuronal signaling and can also serve as stress biomarkers.1Their abnormal levels have been also proposed to be indicative of several neurological diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington disease, among others. Hence, measuring their levels is highly important for early diagnosis, therapy, and disease prognosis. In this work, we investigate facile functionalization methods to tune and enhance sensitivity of printed graphene sensors to neurotransmitters. Sensors based on direct laser scribing and screen-printed graphene ink are studied. These printing methods offer ease of prototyping and scalable fabrication at low cost.

    The effect of functionalization of laser induced graphene (LIG) by electrodeposition and solution-based deposition of TMDs (molybdenum disulfide2and tungsten disulfide) and metal nanoparticles is studied. For different processing methods, electrochemical characteristics (such as electrochemically active surface area: ECSA and heterogenous electron transfer rate: k0) are extracted and correlated to surface chemistry and defect density obtained respectively using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. These functionalization methods are observed to directly impact the sensitivity and limit of detection (LOD) of the graphene sensors for the studied neurotransmitters. For example, as compared to bare LIG, it is observed that electrodeposition of MoS2on LIG improves ECSA by 3 times and k0by 1.5 times.3Electrodeposition of MoS2also significantly reduces LOD of serotonin and dopamine in saliva, enabling detection of their physiologically relevant concentrations (in pM-nM range). In addition, chemical treatment of LIG sensors is carried out in the form of acetic acid treatment. Acetic acid treatment has been shown previously to improve C-C bonds improving the conductivity of LIG sensors.4In our work, in particular, acetic acid treatment leads to larger improvement of LOD of norepinephrine compared to MoS2electrodeposition.

    In addition, we investigate the effect of plasma treatment to tune the sensor response by modifying the defect density and chemistry. For example, we find that oxygen plasma treatment of screen-printed graphene ink greatly improves LOD of norepinephrine up to three orders of magnitude, which may be attributed to the increased defects and oxygen functional groups on the surface as evident by XPS measurements. Defects are known to play a key role in enhancing the sensitivity of 2D materials to surface interactions, and have been explored in tuning/enhancing the sensor sensitivity.5Building on our previous work,3we apply a custom machine learning-based data processing method to further improve that sensitivity and LOD, and also to automatically benchmark different molecule-material pairs.

    Future work includes expanding the plasma chemistry and conditions, studying the effect of precursor mixture in laser-induced solution-based functionalization, and understanding the interplay between molecule-material system. Work is also underway to improve the machine learning model by using nonlinear learning models such as neural networks to improve the sensor sensitivity, selectivity, and robustness.

    References

    A. J. Steckl, P. Ray, (2018), doi:10.1021/acssensors.8b00726.

    Y. Lei, D. Butler, M. C. Lucking, F. Zhang, T. Xia, K. Fujisawa, T. Granzier-Nakajima, R. Cruz-Silva, M. Endo, H. Terrones, M. Terrones, A. Ebrahimi,Sci. Adv.6, 4250–4257 (2020).

    V. Kammarchedu, D. Butler, A. Ebrahimi,Anal. Chim. Acta.1232, 340447 (2022).

    H. Yoon, J. Nah, H. Kim, S. Ko, M. Sharifuzzaman, S. C. Barman, X. Xuan, J. Kim, J. Y. Park,Sensors Actuators B Chem.311, 127866 (2020).

    T. Wu, A. Alharbi, R. Kiani, D. Shahrjerdi,Adv. Mater.31, 1–12 (2019).

     
    more » « less
  5. Abstract

    Black phosphorus (bP) is a two‐dimensional van der Waals material unique in its potential to serve as a support for single‐site catalysts due to its similarity to molecular phosphines, ligands quintessential in homogeneous catalysis. However, there is a scarcity of synthetic methods to install single metal centers on the bP lattice. Here, we demonstrate the functionalization of bP nanosheets with molecular Re and Mo complexes. A suite of characterization techniques, including infrared, X‐ray photoelectron and X‐ray absorption spectroscopy as well as scanning transmission electron microscopy corroborate that the functionalized nanosheets contain a high density of discrete metal centers directly bound to the bP surface. Moreover, the supported metal centers are chemically accessible and can undergo ligand exchange transformations without detaching from the surface. The steric and electronic properties of bP as a ligand are estimated with respect to molecular phosphines. Sterically, bP resembles tri(tolyl)phosphine when monodentate to a metal center, and bis(diphenylphosphino)propane when bidentate, whereas electronically bP is a σ‐donor as strong as a trialkyl phosphine. This work is foundational in elucidating the nature of black phosphorus as a ligand and underscores the viability of using bP as a basis for single‐site catalysts.

     
    more » « less