One of the most costly factors in providing a global computing infrastructure such as the WLCG is the human effort in deployment, integration, and operation of the distributed services supporting collaborative computing, data sharing and delivery, and analysis of extreme scale datasets. Furthermore, the time required to roll out global software updates, introduce new service components, or prototype novel systems requiring coordinated deployments across multiple facilities is often increased by communication latencies, staff availability, and in many cases expertise required for operations of bespoke services. While the WLCG (and distributed systems implemented throughout HEP) is a global service platform, it lacks the capability and flexibility of a modern platform-as-a-service including continuous integration/continuous delivery (CI/CD) methods, development-operations capabilities (DevOps, where developers assume a more direct role in the actual production infrastructure), and automation. Most importantly, tooling which reduces required training, bespoke service expertise, and the operational effort throughout the infrastructure, most notably at the resource endpoints (sites), is entirely absent in the current model. In this paper, we explore ideas and questions around potential NoOps models in this context: what is realistic given organizational policies and constraints? How should operational responsibility be organized across teams and facilities? What are the technicalmore »
The Scalable Systems Laboratory: a Platform for Software Innovation for HEP
The Scalable Systems Laboratory (SSL), part of the IRIS-HEP Software Institute, provides Institute participants and HEP software developers generally with a means to transition their R&D from conceptual toys to testbeds to production-scale prototypes. The SSL enables tooling, infrastructure, and services supporting innovation of novel analysis and data architectures, development of software elements and tool-chains, reproducible functional and scalability testing of service components, and foundational systems R&D for accelerated services developed by the Institute. The SSL is constructed with a core team having expertise in scale testing and deployment of services across a wide range of cyberinfrastructure. The core team embeds and partners with other areas in the Institute, and with LHC and other HEP development and operations teams as appropriate, to define investigations and required service deployment patterns. We describe the approach and experiences with early application deployments, including analysis platforms and intelligent data delivery systems.
- Editors:
- Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W.
- Award ID(s):
- 1836650
- Publication Date:
- NSF-PAR ID:
- 10257007
- Journal Name:
- EPJ Web of Conferences
- Volume:
- 245
- Page Range or eLocation-ID:
- 05019
- ISSN:
- 2100-014X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Tweet Collection Management (TWT) Team aims to ingest 5 billion tweets, clean this data, analyze the metadata present, extract key information, classify tweets into categories, and finally, index these tweets into Elasticsearch to browse and query. The main deliverable of this project is a running software application for searching tweets and for viewing Twitter collections from Digital Library Research Laboratory (DLRL) event archive projects. As a starting point, we focused on two development goals: (1) hashtag-based and (2) username-based search for tweets. For IR1, we completed extraction of two fields within our sample collection: hashtags and username. Sample code for TwiRole, a user-classification program, was investigated for use in our project. We were able to sample from multiple collections of tweets, spanning topics like COVID-19 and hurricanes. Initial work encompassed using a sample collection, provided via Google Drive. An NFS-based persistent storage was later involved to allow access to larger collections. In total, we have developed 9 services to extract key information like username, hashtags, geo-location, and keywords from tweets. We have also developed services to allow for parsing and cleaning of raw API data, and backup of data in an Apache Parquet filestore. All services are Dockerized andmore »
-
To assure high software quality for large-scale industrial software systems, traditional approaches of software quality assurance, such as software testing and performance engineering, have been widely used within Alibaba, the world's largest retailer, and one of the largest Internet companies in the world. However, there still exists a high demand for software quality assessment to achieve high sustainability of business growth and engineering culture in Alibaba. To address this issue, we develop an industrial solution for software quality assessment by following the GQM paradigm in an industrial setting. Moreover, we integrate multiple assessment methods into our solution, ranging from metric selection to rating aggregation. Our solution has been implemented, deployed, and adopted at Alibaba: (1) used by Alibaba's Business Platform Unit to continually monitor the quality for 60+ core software systems; (2) used by Alibaba's R&D Efficiency Unit to support group-wide quality-aware code search and automatic code inspection. This paper presents our proposed industrial solution, including its techniques and industrial adoption, along with the lessons learned during the development and deployment of our solution.
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
SLATE (Services Layer at the Edge) is a new project that, when complete, will implement “cyberinfrastructure as code” by augmenting the canonical Science DMZ pattern with a generic, programmable, secure and trusted underlayment platform. This platform will host advanced container-centric services needed for higher-level capabilities such as data transfer nodes, software and data caches, workflow services and science gateway components. SLATE will use best-of-breed data center virtualization components, and where available, software defined networking, to enable distributed automation of deployment and service lifecycle management tasks by domain experts. As such it will simplify creation of scalable platforms that connect research teams, institutions and resources to accelerate science while reducing operational costs and development cycle times. Since SLATE will be designed to require only commodity components for its functional layers, its potential for building distributed systems should extend across all data center types and scales, thus enabling creation of ubiquitous, science-driven cyberinfrastructure. By providing automation and programmatic interfaces to distributed HPC backends and other cyberinfrastructure resources, SLATE will amplify the reach of science gateways and therefore the domain communities they support.