skip to main content


Title: Quantifying residual stress in Helium-implanted surfaces and its implication for blistering
Helium implantation in surfaces is of interest for plasma-facing materials and other nuclear applications. Vanadium as both a representative bcc material and a material relevant for fusion applications is implanted using a Helium ion beam microscope, and the resulting swelling and nanomechanical properties are quantifed. These values are put in correlation to data obtained from micro-residual stress measurements using a focused ion beam-based ring-core technique. We found that the swelling measured is similar to literature values. Further, we are able to measure the surface stress caused by the implantation and fnd that it approaches the yield strength of the material at blistering doses. The simple calculations performed in the present work, along with several geometrical considerations deduced from experimental results confrm the driving force for blister formation comes from bulging resulting mainly from gas pressure buildup, rather than solely stress-induced buckling  more » « less
Award ID(s):
1807822
NSF-PAR ID:
10258186
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Research
ISSN:
0884-2914
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ion-beam irradiation of an amorphizable material such as Si or Ge may lead to spontaneous pattern formation, rather than flat surfaces, for irradiation beyond some critical angle against the surface normal. It is observed experimentally that this critical angle varies according to many factors, including beam energy, ion species and target material. However, many theoretical analyses predict a critical angleθcof 45independent of energy, ion and target, disagreeing with experiment. Previous work on this topic has suggested that isotropic swelling due to ion-irradiation may act as a stabilization mechanism, potentially offering a theoretical explanation for the elevated value ofθcin Ge compared to Si for the same projectiles. In the present work, we consider a composite model of stress-free strain and isotropic swelling with a generalized treatment of stress modification along idealized ion tracks. We obtain a highly-general linear stability result with a careful treatment of arbitrary spatial variation functions for each of the stress-free strain-rate tensor, a source of deviatoric stress modification, and isotropic swelling, a source of isotropic stress. Comparison with experimental stress measurements suggests that the presence of angle-independent isotropic stress may not be a strong influence onθcfor the 250 eV Ar+Si system. At the same time, plausible parameter values suggest that the swelling mechanism may, indeed, be important for irradiated Ge. As secondary results, we show the unexpected importance forθcof the relationship between free and amorphous-crystalline interfaces in the thin film model. We also show that under simple idealizations used elsewhere, spatial variation of stress may not contribute toθcselection. These findings prompt modeling refinements which will be the focus of future work.

     
    more » « less
  2.  
    more » « less
  3. As one candidate alloy for future Generation IV and fusion reactors, a dual-phase 12Cr oxide-dispersion-strengthened (ODS) alloy was developed for high temperature strength and creep resistance and has shown good void swelling resistance under high damage self-ion irradiation at high temperature. However, the effect of helium and its combination with radiation damage on oxide dispersoid stability needs to be investigated. In this study, 120 keV energy helium was preloaded into specimens at doses of 1 × 1015 and 1 × 1016 ions/cm2 at room temperature, and 3.5 MeV Fe self-ions were sequentially implanted to reach 100 peak displacement-per-atom at 475 °C. He implantation alone in the control sample did not affect the dispersoid morphology. After Fe ion irradiation, a dramatic increase in density of coherent oxide dispersoids was observed at low He dose, but no such increase was observed at high He dose. The study suggests that helium bubbles act as sinks for nucleation of coherent oxide dispersoids, but dispersoid growth may become difficult if too many sinks are introduced, suggesting that a critical mass of trapping is required for stable dispersoid growth. 
    more » « less
  4. Abstract It has long been observed experimentally that energetic ion-beam irradiation of semiconductor surfaces may lead to spontaneous nanopattern formation. For most ion/target/energy combinations, the patterns appear when the angle of incidence exceeds a critical angle, and the models commonly employed to understand this phenomenon exhibit the same behavioral transition. However, under certain conditions, patterns do not appear for any angle of incidence, suggesting an important mismatch between experiment and theory. Previous work by our group (Swenson and Norris 2018 J. Phys.: Condens. Matter 30 304003) proposed a model incorporating radiation-induced swelling, which is known to occur experimentally, and found that in the analytically-tractable limit of small swelling rates, this effect is stabilizing at all angles of incidence, which may explain the observed suppression of ripples. However, at that time, it was not clear how the proposed model would scale with increased swelling rate. In the present work, we generalize that analysis to the case of arbitrary swelling rates. Using a numerical approach, we find that the stabilization effect persists for arbitrarily large swelling rates, and maintains a stability profile largely similar to that of the small swelling case. Our findings strongly support the inclusion of a swelling mechanism in models of pattern formation under ion beam irradiation, and suggest that the simpler small-swelling limit is an adequate approximation for the full mechanism. They also highlight the need for more—and more detailed—experimental measurements of material stresses during pattern formation. 
    more » « less
  5. Direct write patterning of high-transition temperature (high-TC) superconducting oxide thin films with a focused helium ion beam is a formidable approach for the scaling of high-TC circuit feature sizes down to the nanoscale. In this letter, we report using this technique to create a sensitive micro superconducting quantum interference device (SQUID) magnetometer with a sensing area of about 100 square microns. The device is fabricated from a single 35-nm thick YBa2Cu3O7d film. A flux concentrating pick-up loop is directly coupled to a 10 nm nano-slit SQUID. The SQUID is defined entirely by helium ion irradiation from a gas field ion source. The irradiation converts the superconductor to an insulator, and no material is milled away or etched. In this manner, a very narrow non-superconducting nano-slit is created entirely within the plane of the film. The narrow slit dimension allows for maximization of the coupling to the field concentrator. Electrical measurements reveal a large 0.35 mV modulation with a magnetic field. We measure a white noise level of 2 microPhi0. The field noise of the magnetometer is 4 pT/Hz1=2 at 4.2 K. 
    more » « less