skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature‐ and Bias‐Dependent Degradation and Regeneration of Perovskite Solar Cells with Organic and Inorganic Hole Transport Layers
Hybrid halide perovskite solar cells have drawn widespread attention with the achievement of high power conversion efficiencies. However, poor stability remains the greatest barrier preventing their commercialization. Performance degradation and recovery have a complicated dependence on the environment and a dependence on the applied bias, which affects ion migration. Herein, solar cells with an organic hole transport layer and cells with an inorganic hole transport layer are compared. A type of degradation of the organic transport layer is examined, which is reversible by applying a forward bias soak, and how the degradation arises from ion migration mechanisms is explained. Experimental current–voltage and capacitance transient measurements are conducted as a function of temperature. The resulting S‐kink and positive capacitance decay are explained in terms of the modeled effects of a changing ion density at the hole transport layer. An irreversible degradation is found upon heating to more than 100 °C. On the contrary, the inorganic hole transport layer is found to eliminate the observable effects of ion migration, even at elevated temperatures, so long as air exposure is avoided.  more » « less
Award ID(s):
1906492
PAR ID:
10258868
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (a)
Volume:
218
Issue:
7
ISSN:
1862-6300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organic‐inorganic hybrid perovskite solar cells are susceptible to multiple influencing factors such as moisture, oxygen, heat stress, ion migration. Given the complex practical working conditions for solar cells, a fundamental question is how different failure mechanisms collaborate and substantially accelerate the device degradation. In this study, it is found that ion migration can accelerate the reaction between oxygen and methylammonium lead iodide perovskite in light conditions. This is suggested since regions with local electric fields suffer from more severe decomposition. Here it is reported that cesium ions (Cs+) incorporated in perovskite lattice, with a moderate doping concentration (e.g. 5%), can function as stabilizers to efficiently interrupt such a synergistic effect between oxygen induced degradation and ion migration while retaining the high performance of perovskite solar cells. Both experimental and theoretical results suggest that 5% Cs+ions incorporation simultaneously suppresses the formation of reactive superoxide ions () as well as ion migration in perovskites by forming additional energy barriers. This A‐site cations engineering is also a promising strategy to circumvent the detrimental effect of oxygen molecules in FA‐based perovskites, which is important for developing high‐efficiency perovskite solar cells with enhanced stability. 
    more » « less
  2. Capacitance-based techniques have been used to measure the electrical properties of halide perovskite solar cells (PSCs) such as defect activation energy and density, carrier concentration, and dielectric constant, which provide key information for evaluating the device performance. Here, we show that capacitance-based techniques cannot be used to reliably analyze the properties of defects in the perovskite layer or at its interface, since the high-frequency capacitance signature is due to the response of charge carriers in the hole-transport layer (HTL). For HTL-free PSCs, the high-frequency capacitance can be considered as the geometric capacitance for analyzing the dielectric constant of the perovskite layer, since there is no trapping and de-trapping of charge carriers in the perovskite layer. We further find that the low-frequency capacitance signature can be used to calculate the activation energy of the ionic conductivity of the perovskite layer, but the overlapping effects with charge transport materials must be avoided. 
    more » « less
  3. Abstract 2D hybrid organic–inorganic perovskites are potentially promising materials as passivation layers that can enhance the efficiency and stability of perovskite photovoltaics. The ability to suppress ion transport is proposed as a stabilization mechanism, yet an effective characterization of relevant modes of halide diffusion in 2D perovskites is nascent. In light of this knowledge gap, molecular dynamics simulations with enhanced sampling and experimental validation to systematically characterize how ligand chemistry in seven (R‐NH3)2PbI4systems impacts halide diffusion, particularly in the out‐of‐plane direction is combined. It is found that increasing stiffness and length of ligands generally inhibits ion transport, while increasing ligand polarization generally enhances it. Structural and energetic analyses of the migration pathways provide quantitative explanations for these trends, which reflect aspects of the disorder of the organic layer. Overall, this mechanistic analysis greatly enhances the current understanding of halide migration in 2D hybrid organic–inorganic perovskites and yields insights that can inform the design of future passivation materials. 
    more » « less
  4. Abstract Typical lead‐based perovskites solar cells show an onset of photogeneration around 800 nm, leaving plenty of spectral loss in the near‐infrared (NIR). Extending light absorption beyond 800 nm into the NIR should increase photocurrent generation and further improve photovoltaic efficiency of perovskite solar cells (PSCs). Here, a simple and facile approach is reported to incorporate a NIR‐chromophore that is also a Lewis‐base into perovskite absorbers to broaden their photoresponse and increase their photovoltaic efficiency. Compared with pristine PSCs without such an organic chromophore, these solar cells generate photocurrent in the NIR beyond the band edge of the perovskite active layer alone. Given the Lewis‐basic nature of the organic semiconductor, its addition to the photoactive layer also effectively passivates perovskite defects. These films thus exhibit significantly reduced trap densities, enhanced hole and electron mobilities, and suppressed illumination‐induced ion migration. As a consequence, perovskite solar cells with organic chromophore exhibit an enhanced efficiency of 21.6%, and substantively improved operational stability under continuous one‐sun illumination. The results demonstrate the potential generalizability of directly incorporating a multifunctional organic semiconductor that both extends light absorption and passivates surface traps in perovskite active layers to yield highly efficient and stable NIR‐harvesting PSCs. 
    more » « less
  5. Mixed organic–inorganic halide perovskite-based solar cells have attracted interest in recent years due to their potential for both terrestrial and space applications. Analysis of interfaces is critical to predicting device behavior and optimizing device architectures. Most advanced tools to study buried interfaces are destructive in nature and can induce further degradation. Ion beam techniques, such as Rutherford backscattering spectrometry (RBS), is a useful non-destructive method to probe an elemental depth profile of multilayered perovskite solar cells (PSCs) as well as to study the inter-diffusion of various elemental species across interfaces. Additionally, PSCs are becoming viable candidates for space photovoltaic applications, and it is critical to investigate their radiation-induced degradation. RBS can be simultaneously utilized to analyze the radiation effects induced by He+ beam on the device, given their presence in space orbits. In the present work, a 2 MeV He+ beam was used to probe the evidence of elemental diffusion across PSC interfaces with architecture glass/ITO/SnO2/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/spiro-OMeTAD/MoO3/Au. During the analysis, the device active area was exposed to an irradiation equivalent of up to 1.62 × 1015 He+/cm2, and yet, no measurable evidence (with a depth resolution ∼1 nm) of beam-induced ion migration was observed, implying high radiation tolerance of PSCs. On the other hand, aged PSCs exhibited indications of the movement of diverse elemental species, such as Au, Pb, In, Sn, Br, and I, in the active area of the device, which was quantified with the help of RBS. 
    more » « less