Abstract Applications of machine learning (ML) in atmospheric science have been rapidly growing. To facilitate the development of ML models for tropical cyclone (TC) research, this binary dataset contains a specific customization of the National Center for Environmental Prediction (NCEP)/final analysis (FNL) data, in which key environmental conditions relevant to TC formation are extracted for a range of lead times (0–72 hours) during 1999–2023. The dataset is designed as multi-channel images centered on TC formation locations, with a positive and negative directory structure that can be readily read from any ML applications or common data interface. With its standard structure, this dataset provides users with a unique opportunity to conduct ML application research on TC formation as well as related predictability at different forecast lead times.
more »
« less
Decoding Optical Data with Machine Learning
Abstract Optical spectroscopy and imaging techniques play important roles in many fields such as disease diagnosis, biological study, information technology, optical science, and materials science. Over the past decade, machine learning (ML) has proved promising in decoding complex data, enabling rapid and accurate analysis of optical spectra and images. This review aims to shed light on various ML algorithms for optical data analysis with a focus on their applications in a wide range of fields. The goal of this work is to sketch the validity of ML‐based optical data decoding. The review concludes with an outlook on unaddressed problems and opportunities in this emerging subject that interfaces optics, data science, and ML.
more »
« less
- Award ID(s):
- 2001650
- PAR ID:
- 10260236
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- Volume:
- 15
- Issue:
- 2
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This review paper comprehensively analyzes recent advancements in optical fiber‐based biosensors, focusing on conventional fiber and photonic crystal structures. This paper overviews the significant applications of optical fiber biosensors, including bioimaging, quality analysis, food safety, and field environment monitoring, setting the stage for subsequent discussions. The primary objective of the review is to systematically evaluate recent literature concerning optical fiber‐based biosensors, emphasizing their sensitivities and resolutions. The second section explores integrating plasmonic materials such as graphene, TDMC, germanium, black phosphorus, and silicon within optical fiber biosensors, elucidating their roles in enhancing sensitivity and resolution in biosensing applications. A detailed examination of photonic crystal fibers (PCF) follows, categorizing them into internally and externally metal film‐coated biosensors, highlighting their distinct advantages and limitations. Comparative analyses in two tables delineate the performance and sensitivity of optical fiber‐based biosensors, mainly focusing on different coating strategies. The final section of the review discusses emerging trends and applications in optical fiber biosensing technologies, underscoring their potential to transform biomedical and environmental monitoring fields. By synthesizing recent developments and challenges, this review aims to offer researchers and practitioners a comprehensive understanding of optical fiber‐based biosensors, facilitating informed decision‐making and driving further advancements in the field.more » « less
-
Abstract The development and design of energy materials are essential for improving the efficiency, sustainability, and durability of energy systems to address climate change issues. However, optimizing and developing energy materials can be challenging due to large and complex search spaces. With the advancements in computational power and algorithms over the past decade, machine learning (ML) techniques are being widely applied in various industrial and research areas for different purposes. The energy material community has increasingly leveraged ML to accelerate property predictions and design processes. This article aims to provide a comprehensive review of research in different energy material fields that employ ML techniques. It begins with foundational concepts and a broad overview of ML applications in energy material research, followed by examples of successful ML applications in energy material design. We also discuss the current challenges of ML in energy material design and our perspectives. Our viewpoint is that ML will be an integral component of energy materials research, but data scarcity, lack of tailored ML algorithms, and challenges in experimentally realizing ML-predicted candidates are major barriers that still need to be overcome.more » « less
-
Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been successfully applied to discover many important materials, these methods are facing significant challenges due to the tremendous demand of new materials and vast design space of organic molecules and polymers. Accelerated and inverse materials design is an ideal solution to these challenges. With advancements in high-throughput computation, artificial intelligence (especially machining learning, ML), and the growth of materials databases, ML-assisted materials design is emerging as a promising tool to flourish breakthroughs in many areas of materials science and engineering. To date, using ML-assisted approaches, the quantitative structure property/activity relation for material property prediction can be established more accurately and efficiently. In addition, materials design can be revolutionized and accelerated much faster than ever, through ML-enabled molecular generation and inverse molecular design. In this perspective, we review the recent progresses in ML-guided design of organic molecules and polymers, highlight several successful examples, and examine future opportunities in biomedical, chemical, and materials science fields. We further discuss the relevant challenges to solve in order to fully realize the potential of ML-assisted materials design for organic molecules and polymers. In particular, this study summarizes publicly available materials databases, feature representations for organic molecules, open-source tools for feature generation, methods for molecular generation, and ML models for prediction of material properties, which serve as a tutorial for researchers who have little experience with ML before and want to apply ML for various applications. Last but not least, it draws insights into the current limitations of ML-guided design of organic molecules and polymers. We anticipate that ML-assisted materials design for organic molecules and polymers will be the driving force in the near future, to meet the tremendous demand of new materials with tailored properties in different fields.more » « less
-
Abstract Artificial intelligence (AI) and machine learning (ML) pose a challenge for achieving science that is both reproducible and replicable. The challenge is compounded in supervised models that depend on manually labeled training data, as they introduce additional decision‐making and processes that require thorough documentation and reporting. We address these limitations by providing an approach to hand labeling training data for supervised ML that integrates quantitative content analysis (QCA)—a method from social science research. The QCA approach provides a rigorous and well‐documented hand labeling procedure to improve the replicability and reproducibility of supervised ML applications in Earth systems science (ESS), as well as the ability to evaluate them. Specifically, the approach requires (a) the articulation and documentation of the exact decision‐making process used for assigning hand labels in a “codebook” and (b) an empirical evaluation of the reliability” of the hand labelers. In this paper, we outline the contributions of QCA to the field, along with an overview of the general approach. We then provide a case study to further demonstrate how this framework has and can be applied when developing supervised ML models for applications in ESS. With this approach, we provide an actionable path forward for addressing ethical considerations and goals outlined by recent AGU work on ML ethics in ESS.more » « less
An official website of the United States government
