The fast, accurate detection of biomolecules, ranging from nucleic acids and small molecules to proteins and cellular secretions, plays an essential role in various biomedical applications. These include disease diagnostics and prognostics, environmental monitoring, public health, and food safety. Aptamer recognition (DNA or RNA) has gained extensive attention for biomolecular detection due to its high selectivity, affinity, reproducibility, and robustness. Concurrently, biosensing with nanoparticles has been widely used for its high carrier capacity, stability and feasibility of incorporating optical and catalytic activity, and enhanced diffusivity. Biosensors based on aptamers and nanoparticles utilize the combination of their advantages and have become a promising technology for detecting of a wide variety of biomolecules with high sensitivity, reliability, specificity, and detection speed. Via various sensing mechanisms, target biomolecules have been quantified in terms of optical (e.g., colorimetric and fluorometric), magnetic, and electrical signals. In this review, we summarize the recent advances in and compare different aptamer–nanoparticle-based biosensors by nanoparticle types and detection mechanisms. We also share our views on the highlights and challenges of the different nanoparticle-aptamer-based biosensors.
more »
« less
Advances in Plasmonic Photonic Crystal Fiber Biosensors: Exploring Innovative Materials for Bioimaging and Environmental Monitoring
Abstract This review paper comprehensively analyzes recent advancements in optical fiber‐based biosensors, focusing on conventional fiber and photonic crystal structures. This paper overviews the significant applications of optical fiber biosensors, including bioimaging, quality analysis, food safety, and field environment monitoring, setting the stage for subsequent discussions. The primary objective of the review is to systematically evaluate recent literature concerning optical fiber‐based biosensors, emphasizing their sensitivities and resolutions. The second section explores integrating plasmonic materials such as graphene, TDMC, germanium, black phosphorus, and silicon within optical fiber biosensors, elucidating their roles in enhancing sensitivity and resolution in biosensing applications. A detailed examination of photonic crystal fibers (PCF) follows, categorizing them into internally and externally metal film‐coated biosensors, highlighting their distinct advantages and limitations. Comparative analyses in two tables delineate the performance and sensitivity of optical fiber‐based biosensors, mainly focusing on different coating strategies. The final section of the review discusses emerging trends and applications in optical fiber biosensing technologies, underscoring their potential to transform biomedical and environmental monitoring fields. By synthesizing recent developments and challenges, this review aims to offer researchers and practitioners a comprehensive understanding of optical fiber‐based biosensors, facilitating informed decision‐making and driving further advancements in the field.
more »
« less
- Award ID(s):
- 2344476
- PAR ID:
- 10560622
- Publisher / Repository:
- Wiley-VCH GmbH
- Date Published:
- Journal Name:
- ChemistrySelect
- Volume:
- 9
- Issue:
- 28
- ISSN:
- 2365-6549
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biosensors are analytical tools for monitoring various parameters related to living organisms, such as humans and plants. Liquid metals (LMs) have emerged as a promising new material for biosensing applications in recent years. LMs have attractive physical and chemical properties such as deformability, high thermal and electrical conductivity, low volatility, and low viscosity. LM‐based biosensors represent a new strategy in biosensing particularly for wearable and real‐time sensing. While early demonstrations of LM biosensors focus on monitoring physical parameters such as strain, motion, and temperature, recent examples show LM can be an excellent sensing material for biochemical and biomolecular detection as well. In this review, the recent progress of LM‐based biosensors for personalized healthcare and disease monitoring via both physical and biochemical signaling is survey. It is started with a brief introduction of the fundamentals of biosensors and LMs, followed by a discussion of different mechanisms by which LM can transduce biological or physiological signals. Next, it is reviewed example LM‐based biosensors that have been used in real biological systems, ranging from real‐time on‐skin physiological monitoring to target‐specific biochemical detection. Finally, the challenges and future directions of LM‐integrated biosensor platforms is discussed.more » « less
-
Abstract More than half of all Americans suffer from chronic diseases, the leading causes of death and disability. However, prompt treatment of chronic diseases can lead to better patient outcomes and a reduced burden on the healthcare system. This highlights the urgent need for electrochemical (EC) sensors that provide non‐invasive, real‐time monitoring of disease‐indicating biomarkers. Due to their high sensitivity, high selectivity, and cost‐effectiveness, EC biosensors have recently shown tremendous promise for individualized health monitoring. This review explains the working principles of EC biosensors. It summarizes the recent advances and improvements of EC biosensors for detecting biomarkers in different biofluids, including tears, saliva, breath, urine, and sweat. Through a comprehensive overview of EC biosensor technologies, this article is expected to aid the development of flexible and wearable EC biosensing systems that have the potential to provide continuous, long‐term health monitoring for both clinical and at‐home use.more » « less
-
The direct interfacing of photonic crystal fiber to a metallic nanoantenna has widespread application in nanoscale imaging, optical lithography, nanoscale lasers, quantum communication,in vivosensing, and medical surgery. We report on the fabrication of a needle-shaped plasmonic nanoantenna on the end facet of a photonic crystal fiber using electron-beam-induced evaporation of platinum. We demonstrate the coupling of light from the fiber waveguide mode to the subwavelength nanoantenna plasmonic mode focusing down to the apex of the plasmonic needle using a polarization-resolved far-field side-scatter imaging technique. Our work provides an important step toward widespread application of optical fibers in nearfield spectroscopic techniques such as tip-enhanced Raman and fluorescence microscopy, single-photon excitation and quantum sensors, nanoscale optical lithography, and lab-on-fiber devices.more » « less
-
Here we report a photonic crystal with a split ring unit cell shape that demonstrates an order of magnitude larger peak electric field energy density compared with that of a traditional photonic crystal. Split ring photonic crystals possess several subwavelength tuning parameters, including split ring rotation angle and split width, which can be leveraged to modify light confinement for specific applications. Modifying the split ring’s parameters allows for tuning of the peak electric field energy density in the split by over one order of magnitude and tuning of the air band edge wavelength by nearly 10 nm in the near infrared region. Designed to have highly focused optical energy in an accessible subwavelength gap, the split ring photonic crystal is well suited for applications including optical biosensing, optical trapping, and enhanced emission from a quantum dot or other nanoscale emitter that could be incorporated in the split.more » « less
An official website of the United States government

