Fifth generation mobile communication systems (5G) have to accommodate both Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) services. While eMBB applications support high data rates, URLLC services aim at guaranteeing low-latencies and high-reliabilities. eMBB and URLLC services are scheduled on the same frequency band, where the different latency requirements of the communications render their coexistence challenging. In this survey, we review, from an information theoretic perspective, coding schemes that simultaneously accommodate URLLC and eMBB transmissions and show that they outperform traditional scheduling approaches. Various communication scenarios are considered, including point-to-point channels, broadcast channels, interference networks, cellular models, and cloud radio access networks (C-RANs). The main focus is on the set of rate pairs that can simultaneously be achieved for URLLC and eMBB messages, which captures well the tension between the two types of communications. We also discuss finite-blocklength results where the measure of interest is the set of error probability pairs that can simultaneously be achieved in the two communication regimes.
more »
« less
Standardization of Propagation Models for Terrestrial Cellular Systems: A Historical Perspective
Abstract Propagation models constitute a fundamental building block of wireless communications research. Before we build and operate real systems, we must understand the science of radio propagation, and develop channel models that both reflect the important propagation processes and allow a fair comparison of different systems. In the past five decades, wireless systems have gone through five generations, from supporting voice applications to enhanced mobile broadband. To meet the ever increasing data rate demands of wireless systems, frequency bands covering a wide range from 800 MHz to 100 GHz have been allocated for use. The standardization of these systems started in the early/mid 1980s in Europe by the European Telecommunications Standards Institute with the advent of Global System for Mobile Communications. This motivated the development of the first standardized propagation model by the European Cooperation in Science and Technology (COST) 207 working group. These standardization activities were continued and expanded for the third, fourth, and fifth generations of COST, as well as by the Third Generation Partnership Project, and the International Telecommnunication Union. This paper presents a historical overview of the standardized propagation models covering first to fifth-generation systems. In particular, we discuss the evolution and standardization of pathloss models, as well as large and small-scale fading parameters for single antenna and multiple antenna systems. Furthermore, we present insights into the progress of deterministic modelling across the five generations of systems, as well as discuss more advanced modelling components needed for the detailed simulations of millimeter-wave channels. A comprehensive bibliography at the end of the paper will aid the interested reader to dig deeper.
more »
« less
- PAR ID:
- 10267934
- Date Published:
- Journal Name:
- International Journal of Wireless Information Networks
- Volume:
- 28
- Issue:
- 1
- ISSN:
- 1068-9605
- Page Range / eLocation ID:
- 20 to 44
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optimally extracting the advantages available from reconfigurable intelligent surfaces (RISs) in wireless communications systems requires estimation of the channels to and from the RIS. The process of determining these channels is complicated when the RIS is composed of passive elements without any sensing or data processing capabilities, and thus, the channels must be estimated indirectly by a noncolocated device, typically a controlling base station (BS). In this article, we examine channel estimation for passive RIS-based systems from a fundamental viewpoint. We study various possible channel models and the identifiability of the models as a function of the available pilot data and behavior of the RIS during training. In particular, we will consider situations with and without line-of-sight propagation, single-antenna and multi-antenna configurations for the users and BS, correlated and sparse channel models, single-carrier and wideband orthogonal frequency-division multiplexing (OFDM) scenarios, availability of direct links between the users and BS, exploitation of prior information, as well as a number of other special cases. We further conduct simulations of representative algorithms and comparisons of their performance for various channel models using the relevant Cramér-Rao bounds.more » « less
-
Terahertz frequency bands will likely be used for the next-generation wireless communication systems to provide data rates of hundreds of Gbps or even Tbps because of the wide swaths of unused and unexplored spectrum. This paper presents two outdoor wideband measurement campaigns in downtown Brooklyn (urban microcell environment) in the sub-THz band of 140 GHz with TX-RX separation distance up to 100 m: i) terrestrial urban microcell measurement campaign, and ii) rooftop surrogate satellite and backhaul measurement campaign. Outdoor omnidirectional and directional path loss models for both line-of-sight and non-line-of-sight scenarios, as well as foliage loss (signal attenuation through foliage), are provided at 140 GHz for urban microcell environments. These measurements and models provide an understanding of both the outdoor terrestrial (e.g., 6G cellular and backhaul) and non-terrestrial (e.g., satellite and unmanned aerial vehicle communications) wireless channels, and prove the feasibility of using THz frequency bands for outdoor fixed and mobile cellular communications. This paper can be used for future outdoor wireless system design at frequencies above 100 GHz.more » « less
-
Design and standardization of future millimeter-wave (mmWave) wireless communications systems require accurate models of wireless propagation channels. In particular, comprehensive statistical models describing the effect of human bodies moving randomly in the surrounding environment, acting as reflectors or absorbers, on the received power and delay spread are urgently needed. To enable these, new measurements campaigns are required based on channel sounders designed specifically to capture the realtime dynamics of the channel responses. This paper proposes a new methodology to enable fully dynamic measurements with a pseudonoise (PN)-sequence channel sounder by means of quasi-perfect transmitter-receiver (Tx-Rx) synchronization and suppression of probing signal effects in the post-processed channel impulse responses (CIRs). This approach allows the identification of the weak multipath components (MPCs) originated by reflections on the human body. The approach is validated by analysing CIRs collected in an indoor environment with one person moving close to the 60 GHz link. The results also demonstrate that future mmWave systems could exploit these additional MPCs and benefit from human interactions.more » « less
-
Following the current development of the wireless technology landscape, and with respect to the constant growth in user demands, it is inevitable that next-generation mobile wireless networks will use new frequency bands located in the sub-terahertz and terahertz (THz) spectrum to complement the existing microwave and millimeter wave (mmWave) channels. The feasibility of point-to-point stationary THz communication links has already been experimentally demonstrated. To build upon this breakthrough, one of the pressing research targets is making THz communication systems truly mobile. Achieving this target is especially complicated because mobile THz wireless systems (including WLANs and even cellular access) will often operate in the near-field due to the very large (even though physically small) electrical size of the high-gain antenna systems required for making high-rate communication links feasible at such frequencies. This perspective article presents several key prospective research challenges envisioned on the way to designing efficient mobile near-field THz wireless access as a part of 6G and 7G wireless landscapes.more » « less
An official website of the United States government

