skip to main content

Title: Bipolar planetary nebulae from outflow collimation by common envelope evolution
ABSTRACT The morphology of bipolar planetary nebulae (PNe) can be attributed to interactions between a fast wind from the central engine and the dense toroidal-shaped ejecta left over from common envelope (CE) evolution. Here we use the 3D hydrodynamic adaptive mesh refinement (AMR) code AstroBEAR to study the possibility that bipolar PN outflows can emerge collimated even from an uncollimated spherical wind in the aftermath of a CE event. The output of a single CE simulation via the smoothed particle hydrodynamics (SPH) code phantom serves as the initial conditions. Four cases of winds, all with high enough momenta to account for observed high momenta pre-PN outflows, are injected spherically from the region of the CE binary remnant into the ejecta. We compare cases with two different momenta and cases with no radiative cooling versus application of optically thin emission via a cooling curve to the outflow. Our simulations show that in all cases highly collimated bipolar outflows result from deflection of the spherical wind via the interaction with the CE ejecta. Significant asymmetries between the top and bottom lobes are seen in all cases. The asymmetry is strongest for the lower momentum case with radiative cooling. While real post-CE winds more » may be aspherical, our models show that collimation via ‘inertial confinement’ will be strong enough to create jet-like outflows even beginning with maximally uncollimated drivers. Our simulations reveal detailed shock structures in the shock-focused inertial confinement (SFIC) model and develop a lens-shaped inner shock that is a new feature of SFIC-driven bipolar lobes. « less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1813298
Publication Date:
NSF-PAR ID:
10269423
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
497
Issue:
3
Page Range or eLocation-ID:
2855 to 2869
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stellar winds contain enough energy to easily disrupt the parent cloud surrounding a nascent star cluster, and for this reason they have long been considered candidates for regulating star formation. However, direct observations suggest most wind power is lost, and Lancaster et al. recently proposed that this is due to efficient mixing and cooling processes. Here we simulate star formation with wind feedback in turbulent, self-gravitating clouds, extending our previous work. Our simulations cover clouds with an initial surface density of 10 2 –10 4 M ⊙ pc −2 and show that star formation and residual gas dispersal aremore »complete within two to eight initial cloud freefall times. The “efficiently cooled” model for stellar wind bubble evolution predicts that enough energy is lost for the bubbles to become momentum-driven; we find that this is satisfied in our simulations. We also find that wind energy losses from turbulent, radiative mixing layers dominate losses by “cloud leakage” over the timescales relevant for star formation. We show that the net star formation efficiency (SFE) in our simulations can be explained by theories that apply wind momentum to disperse cloud gas, allowing for highly inhomogeneous internal cloud structure. For very dense clouds, the SFE is similar to those observed in extreme star-forming environments. Finally, we find that, while self-pollution by wind material is insignificant in cloud conditions with moderate density (only ≲10 −4 of the stellar mass originated in winds), our simulations with conditions more typical of a super star cluster have star particles that form with as much as 1% of their mass in wind material.« less
  2. We study the long-term evolution of the global structure of axisymmetric accretion flows onto a black hole (BH) at rates substantially higher than the Eddington value (Mdot,Edd)performing two-dimensional hydrodynamical simulations with and without radiative diffusion. In the high-accretion optically-thick limit, where the radiation energy is efficiently trapped within the inflow, the accretion flow becomes adiabatic and comprises of turbulent gas in the equatorial region and strong bipolar outflows. As a result, the mass inflow rate decreases toward the center as Mdot,in∝r_p with p∼0.5−0.7 and a small fraction of the inflowing gas feeds the nuclear BH. Thus, super-Eddington accretion is sustainedmore »only when a larger amount of gas is supplied from larger radii at >100−1000 Mdot, Edd. The global structure of the flow settles down to a quasi-steady state in millions of the orbital timescale at the BH event horizon, which is >10−100 times longer than that addressed in previous (magneto-)RHD simulation studies. Energy transport via radiative diffusion accelerates the outflow near the poles in the inner region but does not change the overall properties of the accretion flow compared to the cases without diffusion. Based on our simulation results, we provide a mechanical feedback model for super-Eddington accreting BHs. This can be applied as a sub-grid model in large-scale cosmological simulations that do not sufficiently resolve galactic nuclei, and to the formation of the heaviest gravitational-wave sources via accretion in dense environments.« less
  3. ABSTRACT Feedback from accreting supermassive black holes (BHs), active galactic nuclei (AGNs), is now a cornerstone of galaxy formation models. In this work, we present radiation-hydrodynamic simulations of radiative AGN feedback using the novel arepo-rt code. A central BH emits radiation at a constant luminosity and drives an outflow via radiation pressure on dust grains. Utilizing an isolated Navarro–Frenk–White (NFW) halo we validate our set-up in the single- and multiscattering regimes, with the simulated shock front propagation in excellent agreement with the expected analytic result. For a spherically symmetric NFW halo, an examination of the simulated outflow properties with radiationmore »collimation demonstrates a decreasing mass outflow rate and momentum flux, but increasing kinetic power and outflow velocity with decreasing opening angle. We then explore the impact of a central disc galaxy and the assumed dust model on the outflow properties. The contraction of the halo during the galaxy’s formation and modelling the production of dust grains result in a factor 100 increase in the halo’s optical depth. Radiation then couples momentum more efficiently to the gas, driving a stronger shock and producing a mass-loaded $\sim \!10^{3}\, \mathrm{M}_{\odot }\, \mathrm{yr}^{-1}$ outflow with a velocity of $\sim \!2000\, \mathrm{km}\, \mathrm{s}^{-1}$. However, the inclusion of dust destruction mechanisms, like thermal sputtering, leads to the rapid destruction of dust grains within the outflow, reducing its properties below the initial NFW halo. We conclude that radiative AGN feedback can drive outflows, but a thorough numerical and physical treatment is required to assess its true impact.« less
  4. ABSTRACT We explore the survival of cool clouds in multiphase circumgalactic media. We revisit the ‘cloud-crushing problem’ in a large survey of simulations including radiative cooling, self-shielding, self-gravity, magnetic fields, and anisotropic Braginskii conduction and viscosity (with saturation). We explore a wide range of parameters including cloud size, velocity, ambient temperature and density, and a variety of magnetic field configurations and cloud turbulence. We find that realistic magnetic fields and turbulence have weaker effects on cloud survival; the most important physics is radiative cooling and conduction. Self-gravity and self-shielding are important for clouds that are initially Jeans-unstable, but largely irrelevantmore »otherwise. Non-self-gravitating, realistically magnetized clouds separate into four regimes: (1) at low column densities, clouds evaporate rapidly via conduction; (2) a ‘failed pressure confinement’ regime, where the ambient hot gas cools too rapidly to provide pressure confinement for the cloud; (3) an ‘infinitely long-lived’ regime, in which the cloud lifetime becomes longer than the cooling time of gas swept up in the leading bow shock, so the cloud begins to accrete and grow; and (4) a ‘classical cloud destruction’ regime, where clouds are eventually destroyed by instabilities. In the final regime, the cloud lifetime can exceed the naive cloud-crushing time owing to conduction-induced compression. However, small and/or slow-moving clouds can also evaporate more rapidly than the cloud-crushing time. We develop simple analytic models that explain the simulated cloud destruction times in this regime.« less
  5. ABSTRACT

    The existence of fast moving, cold gas ubiquitously observed in galactic winds is theoretically puzzling, since the destruction time of cold gas is much smaller than its acceleration time. In previous work, we showed that cold gas can accelerate to wind speeds and grow in mass if the radiative cooling time of mixed gas is shorter than the cloud destruction time. Here, we study this process in much more detail, and find remarkably robust cloud acceleration and growth in a wide variety of scenarios. Radiative cooling, rather than the Kelvin–Helmholtz instability, enables self-sustaining entrainment of hot gas on tomore »the cloud via cooling-induced pressure gradients. Indeed, growth peaks when the cloud is almost co-moving. The entrainment velocity is of order the cold gas sound speed, and growth is accompanied by cloud pulsations. Growth is also robust to the background wind and initial cloud geometry. In an adiabatic Chevalier-Clegg type wind, for instance, the mass growth rate is constant. Although growth rates are similar with magnetic fields, cloud morphology changes dramatically, with low density, magnetically supported filaments, which have a small mass fraction but dominate by volume. This could bias absorption line observations. Cloud growth from entraining and cooling hot gas can potentially account for the cold gas content of the circumgalactic medium (CGM). It can also fuel star formation in the disc as cold gas recycled in a galactic fountain accretes and cools halo gas. We speculate that galaxy-scale simulations should converge in cold gas mass once cloud column densities of N ∼ 1018 cm−2 are resolved.

    « less