skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Diverse Systems for Efficient Sequence Insertion and Replacement in Precise Plant Genome Editing
CRISPR-mediated genome editing has been widely applied in plants to make uncomplicated genomic modifications including gene knockout and base changes. However, the introduction of many genetic variants related to valuable agronomic traits requires complex and precise DNA changes. Different CRISPR systems have been developed to achieve efficient sequence insertion and replacement but with limited success. A recent study has significantly improved NHEJ- and HDR-mediated sequence insertion and replacement using chemically modified donor templates. Together with other newly developed precise editing systems, such as prime editing and CRISPR-associated transposases, these technologies will provide new avenues to further the plant genome editing field.  more » « less
Award ID(s):
2029889 1758745
PAR ID:
10270676
Author(s) / Creator(s):
;
Date Published:
Journal Name:
BioDesign Research
Volume:
2020
ISSN:
2693-1257
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Canonical CRISPR-Cas9 genome editing technique has profoundly impacted the fields of plant biology, biotechnology, and crop improvement. Since non-homologous end joining (NHEJ) is usually considered to generate random indels, its high efficiency mutation is generally not pertinent to precise editing. Homology-directed repair (HDR) can mediate precise editing with supplied donor DNA, but it suffers from extreme low efficiency in higher plants. Therefore, precision editing in plants will be facilitated by the ability to predict NHEJ repair outcome and to improve HDR efficiency. Here, we report that NHEJ-mediated single nucleotide insertion at different rice genes is predictable based on DNA sequences at the target loci. Three mutation prediction tools (inDelphi, FORECasT, and SPROUT) have been validated in the rice plant system. We also evaluated the chimeric guide RNA (cgRNA) and Cas9-Retron precISe Parallel Editing via homologY (CRISPEY) strategies to facilitate donor template supply for improving HDR efficiency in Nicotiana benthamiana and rice. However, neither cgRNA nor CRISPEY improved plant HDR editing efficiency in this study. Interestingly, our data indicate that tethering of 200–250 nucleotides long sequence to either 5′ or 3′ ends of guide RNA did not significantly affect Cas9 cleavage activity. 
    more » « less
  2. Abstract

    CRISPR‐Cas9 has been shown to be a valuable tool in recent years, allowing researchers to precisely edit the genome using an RNA‐guided nuclease to initiate double‐strand breaks. Until recently, classical RAD51‐mediated homologous recombination has been a powerful tool for gene targeting in the mossPhyscomitrella patens. However, CRISPR‐Cas9‐mediated genome editing inP. patenswas shown to be more efficient than traditional homologous recombination (Plant Biotechnology Journal, 15, 2017, 122). CRISPR‐Cas9 provides the opportunity to efficiently edit the genome at multiple loci as well as integrate sequences at precise locations in the genome using a simple transient transformation. To fully take advantage of CRISPR‐Cas9 genome editing inP. patens, here we describe the generation and use of a flexible and modular CRISPR‐Cas9 vector system. Without the need for gene synthesis, this vector system enables editing of up to 12 loci simultaneously. Using this system, we generated multiple lines that had null alleles at four distant loci. We also found that targeting multiple sites within a single locus can produce larger deletions, but the success of this depends on individual protospacers. To take advantage of homology‐directed repair, we developed modular vectors to rapidly generate DNA donor plasmids to efficiently introduce DNA sequences encoding for fluorescent proteins at the 5′ and 3′ ends of gene coding regions. With regard to homology‐directed repair experiments, we found that if the protospacer sequence remains on the DNA donor plasmid, then Cas9 cleaves the plasmid target as well as the genomic target. This can reduce the efficiency of introducing sequences into the genome. Furthermore, to ensure the generation of a null allele near the Cas9 cleavage site, we generated a homology plasmid harboring a “stop codon cassette” with downstream near‐effortless genotyping.

     
    more » « less
  3. Abstract

    Efficient and precise targeted insertion holds great promise but remains challenging in plant genome editing. An efficient nonhomologous end-joining-mediated targeted insertion method was recently developed by combining clustered regularly interspaced short palindromic repeat (CRISPR)/Streptococcus pyogenes CRISPR-associated nuclease 9 (SpCas9) gene editing with phosphorothioate modified double-stranded oligodeoxynucleotides (dsODNs). Yet, this approach often leads to imprecise insertions with no control over the insertion direction. Here, we compared the influence of chemical protection of dsODNs on efficiency of targeted insertion. We observed that CRISPR/SpCas9 frequently induced staggered cleavages with 1-nucleotide 5′ overhangs; we also evaluated the effect of donor end structures on the direction and precision of targeted insertions. We demonstrate that chemically protected dsODNs with 1-nucleotide 5′ overhangs significantly improved the precision and direction control of target insertions in all tested CRISPR targeted sites. We applied this method to endogenous gene tagging in green foxtail (Setaria viridis) and engineering of cis-regulatory elements for disease resistance in rice (Oryza sativa). We directionally inserted 2 distinct transcription activator-like effector binding elements into the promoter region of a recessive rice bacterial blight resistance gene with up to 24.4% efficiency. The resulting rice lines harboring heritable insertions exhibited strong resistance to infection by the pathogen Xanthomonas oryzae pv. oryzae in an inducible and strain-specific manner.

     
    more » « less
  4. CRISPR/Cas technology is increasingly being used as a common methodology in many cancer biology studies due to the ease and convenience of the technique. Precise editing of genomic DNA has been achieved upon repair of CRISPR-induced DNA double-strand breaks (DSBs) by homologous recombination (HR). HR repairs DNA DSBs with high fidelity and therefore, deficiencies in HR result in genome instability. These deficiencies have been demonstrated in many cancers. RAD51-dependent HR is a very important pathway for repairing DSBs. Previous studies have shown that genome editing using CRISPR technology relies on the repair of site-specific DNA DSBs induced by the RNA-guided Cas9 endonuclease. Furthermore, previous studies have shown that the efficiency of CRISPR-mediated HR can be improved by the stimulation of HR promoting factors, such as the RAD51 recombinase. Despite the ease and efficient use the CRISPR/Cas technology for genome editing, one limitation is the potential occurrence of associated off-target effects. If CRISPR technology is planned to be used to target cancer cells with defective HR capabilities, will off-target mutations be likely to occur? In order to answer this question, a system was developed in Saccharomyces cerevisiae using green fluorescent protein (GFP) as a reporter to identify off-target CRISPR-induced DSBs. This study set out to test the number of off-target DSBs that could be introduced by CRISPR-induced genome editing in a RAD51-deficient HR model. We were curious whether loss of RAD51-dependent HR would increase the abundance of off-target CRISPR-induced DSBs in mutant yeast strains as compared to those with a functioning HR-dependent DNA repair pathway. Preliminary findings using this system will be presented. 
    more » « less
  5. The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples. 
    more » « less