skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid chemically selective 3D imaging in the mid-infrared
The emerging technique of mid-infrared optical coherence tomography (MIR-OCT) takes advantage of the reduced scattering of MIR light in various materials and devices, enabling tomographic imaging at deeper penetration depths. Because of challenges in MIR detection technology, the image acquisition time is, however, significantly longer than for tomographic imaging methods in the visible/near-infrared. Here we demonstrate an alternative approach to MIR tomography with high-speed imaging capabilities. Through femtosecond nondegenerate two-photon absorption of MIR light in a conventional Si-based CCD camera, we achieve wide-field, high-definition tomographic imaging with chemical selectivity of structured materials and biological samples in mere seconds.  more » « less
Award ID(s):
2003837
PAR ID:
10272242
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
8
Issue:
7
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 995
Size(s):
Article No. 995
Sponsoring Org:
National Science Foundation
More Like this
  1. The detection of mid-infrared (MIR) light is technologically important for applications such as night vision, imaging, sensing, and thermal metrology. Traditional MIR photodetectors either require cryogenic cooling or have sophisticated device structures involving complex nanofabrication. Here, we conceive spectrally tunable MIR detection by using two-dimensional metal halide perovskites (2D-MHPs) as the critical building block. Leveraging the ultralow cross-plane thermal conductivity and strong temperature-dependent excitonic resonances of 2D-MHPs, we demonstrate ambient-temperature, all-optical detection of MIR light with sensitivity down to 1 nanowatt per square micrometer, using plastic substrates. Through the adoption of membrane-based structures and a photonic enhancement strategy unique to our all-optical detection modality, we further improved the sensitivity to sub–10 picowatt-per-square-micrometer levels. The detection covers the mid-wave infrared regime from 2 to 4.5 micrometers and extends to the long-wave infrared wavelength at 10.6 micrometers, with wavelength-independent sensitivity response. Our work opens a pathway to alternative types of solution-processable, long-wavelength thermal detectors for molecular sensing, environmental monitoring, and thermal imaging. 
    more » « less
  2. Volumetric fluorescence imaging techniques, such as confocal, multiphoton, light sheet, and light field microscopy, have become indispensable tools across a wide range of cellular, developmental, and neurobiological applications. However, it is difficult to scale such techniques to the large 3D fields of view (FOV), volume rates, and synchronicity requirements for high-resolution 4D imaging of freely behaving organisms. Here, we present reflective Fourier light field computed tomography (ReFLeCT), a high-speed volumetric fluorescence computational imaging technique. ReFLeCT synchronously captures entire tomograms of multiple unrestrained, unanesthetized model organisms across multi-millimeter 3D FOVs at 120 volumes per second. In particular, we applied ReFLeCT to reconstruct 4D videos of fluorescently labeled zebrafish andDrosophilalarvae, enabling us to study their heartbeat, fin and tail motion, gaze, jaw motion, and muscle contractions with nearly isotropic 3D resolution while they are freely moving. To our knowledge, as a novel approach for snapshot tomographic capture, ReFLeCT is a major advance toward bridging the gap between current volumetric fluorescence microscopy techniques and macroscopic behavioral imaging. 
    more » « less
  3. Wide-field mid-infrared (MIR) hyperspectral imaging offers a promising approach for studying heterogeneous chemical systems due to its ability to independently characterize the molecular properties of different regions of a sample. However, applications of wide-field MIR microscopy are limited to spatial resolutions no better than ∼1 μm. While methods exist to overcome the classical diffraction limit of ∼λ/2, chromatic aberration from transmissive imaging reduces the achievable resolution. Here we describe the design and implementation of a simple MIR achromatic lens combination that we believe will aid in the development of resolution-enhanced wide-field MIR hyperspectral optical and chemical absorption imaging. We also examine the use of this doublet lens to image through polystyrene microspheres, an emerging and simple means for enhancing spatial resolution. 
    more » « less
  4. Gregor, Ingo; Erdmann, Rainer; Koberling, Felix (Ed.)
    Infrared photothermal heterodyne imaging (IR-PHI) represents a convenient table top approach for conducting superresolution imaging and spectroscopy throughout the all-important mid infrared (MIR) spectral region. Although IR-PHI provides label-free, superresolution MIR absorption information, it is not quantitative. In this study, we establish quantitative relationships between observed IR-PHI signals and relevant photothermal parameters of investigated specimens. Specifically, we conduct a size series analysis of different radii polystyrene (PS) beads so as to quantitatively link IR-PHI signal contrast to specimen heat capacity, MIR peak absorption cross-section, and scattering cross-section at IR-PHI’s probe wavelength. 
    more » « less
  5. Miniaturized spectrometers in the mid-infrared (MIR) are critical in developing next-generation portable electronics for advanced sensing and analysis. The bulky gratings or detector/filter arrays in conventional micro-spectrometers set a physical limitation to their miniaturization. In this work, we demonstrate a single-pixel MIR micro-spectrometer that reconstructs the sample transmission spectrum by a spectrally dispersed light source instead of spatially grated light beams. The spectrally tunable MIR light source is realized based on the thermal emissivity engineered via the metal-insulator phase transition of vanadium dioxide (VO2). We validate the performance by showing that the transmission spectrum of a magnesium fluoride (MgF2) sample can be computationally reconstructed from sensor responses at varied light source temperatures. With potentially minimum footprint due to the array-free design, our work opens the possibility where compact MIR spectrometers are integrated into portable electronic systems for versatile applications. 
    more » « less