skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution electric vehicle charging data from a workplace setting
{"Abstract":["This dataset contains information from 3,395 high resolution electric vehicle charging sessions as presented in "Electric vehicle charging stations in the workplace: high-resolution data from casual and habitual users ", including indicator variables for user types based on time of adoption, total sessions logged, and position held within the firm. The data contains sessions from 85 EV drivers with repeat usage at 105 stations across 25 sites at a workplace charging program. The workplace locations include facilities such as research and innovation centers, manufacturing, testing facilities and office headquarters for a firm participating in the U.S. Department of Energy (DOE) workplace charging challenge. The data is in a human and machine readable *.CSV format. The resolution of the data is to the nearest second, which is the same resolution as used in the analysis of the paper. It is directly importable into free software."]}  more » « less
Award ID(s):
1945332 1931980
PAR ID:
10332596
Author(s) / Creator(s):
; ;
Publisher / Repository:
Harvard Dataverse
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Problems of poor network interoperability in electric vehicle (EV) infrastructure, where data about real-time usage or consumption is not easily shared across service providers, has plagued the widespread analysis of energy used for transportation. In this article, we present a high-resolution dataset of real-time EV charging transactions resolved to the nearest second over a one-year period at a multi-site corporate campus. This includes 105 charging stations across 25 different facilities operated by a single firm in the U.S. Department of Energy Workplace Charging Challenge. The high-resolution data has 3,395 real-time transactions and 85 users with both paid and free sessions. The data has been expanded for re-use such as identifying charging behaviour and segmenting user groups by frequency of usage, stage of adoption, and employee type. Potential applications include but are not limited to simulating and parameterizing energy demand models; investigating flexible charge scheduling and optimal power flow problems; characterizing transportation emissions and electric mobility patterns at high temporal resolution; and evaluating characteristics of early adopters and lead user innovation. 
    more » « less
  2. Charging infrastructure is the coupling link between power and transportation networks, thus determining charging station siting is necessary for planning of power and transportation systems. While previous works have either optimized for charging station siting given historic travel behavior, or optimized fleet routing and charging given an assumed placement of the stations, this paper introduces a linear program that optimizes for station siting and macroscopic fleet operations in a joint fashion. Given an electricity retail rate and a set of travel demand requests, the optimization minimizes total cost for an autonomous EV fleet comprising of travel costs, station procurement costs, fleet procurement costs, and electricity costs, including demand charges. Specifically, the optimization returns the number of charging plugs for each charging rate (e.g., Level 2, DC fast charging) at each candidate location, as well as the optimal routing and charging of the fleet. From a case-study of an electric vehicle fleet operating in San Francisco, our results show that, albeit with range limitations, small EVs with low procurement costs and high energy efficiencies are the most cost-effective in terms of total ownership costs. Furthermore, the optimal siting of charging stations is more spatially distributed than the current siting of stations, consisting mainly of high-power Level 2 AC stations (16.8 kW) with a small share of DC fast charging stations and no standard 7.7kW Level 2 stations. Optimal siting reduces the total costs, empty vehicle travel, and peak charging load by up to 10%. 
    more » « less
  3. By displacing gasoline and diesel fuels, electric cars and fleets offer significant public health benefits by reducing emissions from the transportation sector. However, public confidence in the reliability of charging infrastructure remains a fundamental barrier to adoption. Using large-scale social data and machine learning based on 12,720 U.S. electric vehicle charging stations, we provide national evidence on how well the existing charging infrastructure is serving the needs of the expanding population of EV drivers in 651 core-based statistical areas in the United States. Contrary to predictions, we find that stations at private charging locations do not outperform public charging locations provided by government. We also find evidence of higher negative sentiment in the dense urban centers, where issues of charge rage and congestion may be the most prominent. Overall, 40% of drivers using mobility apps have faced negative experiences at EV charging stations, a problem that needs to be fixed as the market expands. 
    more » « less
  4. Abstract Battery electric vehicles (BEVs) have emerged as a promising alternative to traditional internal combustion engine (ICE) vehicles due to benefits in improved fuel economy, lower operating cost, and reduced emission. BEVs use electric motors rather than fossil fuels for propulsion and typically store electric energy in lithium-ion cells. With rising concerns over fossil fuel depletion and the impact of ICE vehicles on the climate, electric mobility is widely considered as the future of sustainable transportation. BEVs promise to drastically reduce greenhouse gas emissions as a result of the transportation sector. However, mass adoption of BEVs faces major barriers due to consumer worries over several important battery-related issues, such as limited range, long charging time, lack of charging stations, and high initial cost. Existing solutions to overcome these barriers, such as building more charging stations, increasing battery capacity, and stationary vehicle-to-vehicle (V2V) charging, often suffer from prohibitive investment costs, incompatibility to existing BEVs, or long travel delays. In this paper, we propose P eer-to- P eer C ar C harging (P2C2), a scalable approach for charging BEVs that alleviates the need for elaborate charging infrastructure. The central idea is to enable BEVs to share charge among each other while in motion through coordination with a cloud-based control system. To re-vitalize a BEV fleet, which is continuously in motion, we introduce Mobile Charging Stations (MoCS), which are high-battery-capacity vehicles used to replenish the overall charge in a vehicle network. Unlike existing V2V charging solutions, the charge sharing in P2C2 takes place while the BEVs are in-motion, which aims at minimizing travel time loss. To reduce BEV-to-BEV contact time without increasing manufacturing costs, we propose to use multiple batteries of varying sizes and charge transfer rates. The faster but smaller batteries are used for charge transfer between vehicles, while the slower but larger ones are used for prolonged charge storage. We have designed the overall P2C2 framework and formalized the decision-making process of the cloud-based control system. We have evaluated the effectiveness of P2C2 using a well-characterized simulation platform and observed dramatic improvement in BEV mobility. Additionally, through statistical analysis, we show that a significant reduction in carbon emission is also possible if MoCS can be powered by renewable energy sources. 
    more » « less
  5. We are witnessing a rapid growth of electrified vehicles due to the ever-increasing concerns on urban air quality and energy security. Compared to other types of electric vehicles, electric buses have not yet been prevailingly adopted worldwide due to their high owning and operating costs, long charging time, and the uneven spatial distribution of charging facilities. Moreover, the highly dynamic environment factors such as unpredictable traffic congestion, different passenger demands, and even the changing weather can significantly affect electric bus charging efficiency and potentially hinder the further promotion of large-scale electric bus fleets. To address these issues, in this article, we first analyze a real-world dataset including massive data from 16,359 electric buses, 1,400 bus lines, and 5,562 bus stops. Then, we investigate the electric bus network to understand its operating and charging patterns, and further verify the necessity and feasibility of a real-time charging scheduling. With such understanding, we design busCharging , a pricing-aware real-time charging scheduling system based on Markov Decision Process to reduce the overall charging and operating costs for city-scale electric bus fleets, taking the time-variant electricity pricing into account. To show the effectiveness of busCharging , we implement it with the real-world data from Shenzhen, which includes GPS data of electric buses, the metadata of all bus lines and bus stops, combined with data of 376 charging stations for electric buses. The evaluation results show that busCharging dramatically reduces the charging cost by 23.7% and 12.8% of electricity usage simultaneously. Finally, we design a scheduling-based charging station expansion strategy to verify our busCharging is also effective during the charging station expansion process. 
    more » « less