skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generating bursts of femtosecond laser pulses with a tunable delay and envelope in a folded Michelson interferometer
Bursts of 16 femtosecond laser pulses are generated in a fourfold Michelson interferometer with a tunable delay and envelope. Solutions are given to solve the “forward problem” (bursts from a given parameter set) and “inverse problem” (obtain parameter set from a given burst). Three types of bursts are generated experimentally with envelopes suitable for applications in laser materials processing and the generation of terahertz radiation.  more » « less
Award ID(s):
1846671
PAR ID:
10273151
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
60
Issue:
20
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. 5867
Size(s):
Article No. 5867
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two-photon lithography (TPL) is a direct laser writing process that enables the fabrication of cm-scale complex three-dimensional polymeric structures with submicrometer resolution. In contrast to the slow and serial writing scheme of conventional TPL, projection TPL (P-TPL) enables rapid printing of entire layers at once. However, process prediction remains a significant challenge in P-TPL due to the lack of computationally efficient models. In this work, we present machine learning-based surrogate models to predict the outcomes of P-TPL to >98% of the accuracy of a physics-based reaction-diffusion finite element simulation. A classification neural network was trained using data generated from the physics-based simulations. This enabled us to achieve computationally efficient and accurate prediction of whether a set of printing conditions will result in precise and controllable polymerization and the desired printing versus no printing or runaway polymerization. We interrogate this surrogate model to investigate the parameter regimes that are promising for successful printing. We predict combinations of photoresist reaction rate constants that are necessary to print for a given set of processing conditions, thereby generating a set of printability maps. The surrogate models reduced the computational time that is required to generate these maps from more than 10 months to less than a second. Thus, these models can enable rapid and informed selection of photoresists and printing parameters during process control and optimization. 
    more » « less
  2. Abstract The jet composition in gamma-ray bursts (GRBs) is still an unsolved issue. We try to provide some clues to the issue by analyzing the spectral properties of GRB 160509A and GRB 130427A with a main burst and a postburst. We first perform Bayesian time-resolved spectral analysis and compare the spectral components and spectral properties of the main bursts and postbursts of the two bursts and find that both bursts have the thermal components, and the thermal components are mainly found in the main bursts, while the postbursts are mainly dominated by the nonthermal components. We also find that the low-energy spectral indices of some time bins in the main bursts of these two GRBs exceed the so-called synchronous dead line, and in the postburst, only GRB 160509A has four time bins exceeding the dead line, while none of GRB 130427A exceed the dead line. We then constrain the outflow properties of both bursts and find that the main bursts is consistent with the typical properties of photosphere radiation. Therefore, our results support the transition of the GRB jet component from the fireball to the Poynting-flux-dominated jet. Finally, after analyzing the correlation and parameter evolution of the spectral parameters of the two bursts, we find that the correlations of the spectral parameters have different behaviors in the main bursts and postbursts. The parameter evolution trends of the main bursts and postbursts also show consistent and inconsistent behavior; therefore, we currently cannot determine whether the main bursts and postbursts come from the same origin. 
    more » « less
  3. Abstract The Earth’s radiation belts are maintained by a number of acceleration, loss and transport mechanisms, and the electron fluxes at any given time are highly variable. Microbursts, which are rapid (sub-second) bursts of energetic electrons entering the atmosphere from the magnetosphere, are one of the key loss mechanisms controlling radiation belt fluxes. Such rapid bursts are typically observed from the outer radiation belt and driven by interactions with whistler mode chorus waves, but they can also occur in the inner belt and slot region, driven by lightning-generated whistlers. This lightning-induced electron precipitation is typically observed at 10s–100s keV, but here we present direct observations of this phenomenon at MeV energies. This unveils a coupling between near-Earth processes, such as lightning, and radiation belt processes, such as relativistic electron microbursts, bridging the gap between Earth weather and space weather. 
    more » « less
  4. null (Ed.)
    Uncertainty is an omnipresent issue in real-world optimization problems. This paper studies a fundamental problem concerning uncertainty, known as the β-robust scheduling problem. Given a set of identical machines and a set of jobs whose processing times follow a normal distribution, the goal is to assign jobs to machines such that the probability that all the jobs are completed by a given common due date is maximized. We give the first systematic study on the complexity and algorithms for this problem. A strong negative result is shown by ruling out the existence of any polynomial-time algorithm with a constant approximation ratio for the general problem unless P=NP. On the positive side, we provide the first FPT-AS (fixed parameter tractable approximation scheme) parameterized by the number of different kinds of jobs, which is a common parameter in scheduling problems. It returns a solution arbitrarily close to the optimal solution, provided that the job processing times follow a few different types of distributions. We further complement the theoretical results by implementing our algorithm. The experiments demonstrate that by choosing an appropriate approximation ratio, the algorithm can efficiently compute a near-optimal solution. 
    more » « less
  5. The design of fusion devices is typically based on computationally expensive simulations. This can be alleviated using high aspect ratio models that employ a reduced number of free parameters, especially in the case of stellarator optimization where non-axisymmetric magnetic fields with a large parameter space are optimized to satisfy certain performance criteria. However, optimization is still required to find configurations with properties such as low elongation, high rotational transform, finite beta and good fast particle confinement. In this work, we train a machine learning model to construct configurations with favourable confinement properties by finding a solution to the inverse design problem, that is, obtaining a set of model input parameters for given desired properties. Since the solution of the inverse problem is non-unique, a probabilistic approach, based on mixture density networks, is used. It is shown that optimized configurations can be generated reliably using this method. 
    more » « less