A<sc>bstract</sc> It has been argued that the Randall-Sundrum (RS) phase transition rate is suppressed when the holographic theory corresponds to a largeNYang-Mills and when the stabilizing field has a small mass. Here we argue that self-interactions can alleviate the latter suppression. We consider a cubic term in the bulk potential for the Goldberger-Wise (GW) scalar that is responsible for stabilizing the RS geometry. Adding a cubic term suffices to separate the two roles of the GW stabilization: generating a large hierarchy and triggering confinement. We study the resulting radion potential and the dynamics of the early universe phase transition. For a negative coefficient of the cubic term, the effect of the cubic becomes important in the infra-red, and the resulting radion potential is deeper, thereby increasing the radion mass while maintaining a large hierarchy. Staying within the radion effective field theory, we calculate the rate of bubble nucleation from the hot phase to the confined RS phase, both in thin and thick wall limits. The cubic term enhances the rate and allows relaxing the condition on the maximum number of colorsNmaxof the dual theory for which the phase transition can be completed. Importantly, this reduces the amount of supercooling that the false vacuum undergoes, increases the peak frequency of the gravitational waves (GW) produced from bubble collisions, and reduces the strength of the GW signal. The reduced GW signal is however still within the reach of proposed space-based GW detectors.
more »
« less
Gravitational waves from dark Yang-Mills sectors
A bstract Dark Yang-Mills sectors, which are ubiquitous in the string landscape, may be reheated above their critical temperature and subsequently go through a confining first-order phase transition that produces stochastic gravitational waves in the early universe. Taking into account constraints from lattice and from Yang-Mills (center and Weyl) symmetries, we use a phenomenological model to construct an effective potential of the semi quark-gluon plasma phase, from which we compute the gravitational wave signal produced during confinement for numerous gauge groups. The signal is maximized when the dark sector dominates the energy density of the universe at the time of the phase transition. In that case, we find that it is within reach of the next-to-next generation of experiments (BBO, DECIGO) for a range of dark confinement scales near the weak scale.
more »
« less
- PAR ID:
- 10273197
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 5
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the prospects for probing the Nnaturalness solution to the electroweak hierarchy problem with future gravitational wave observatories. Nnaturalness, in its simplest incarnation, predictsNcopies of the Standard Model with varying Higgs mass parameters. We show that in certain parameter regions the scalar reheaton transfers a substantial energy density to the sector with the smallest positive Higgs squared mass while remaining consistent with bounds on additional effective relativistic species. In this sector, all six quarks are much lighter than the corresponding QCD confinement scale, allowing for the possibility of a first-order chiral symmetry-breaking phase transition and an associated stochastic gravitational wave signal. We consider several scenarios characterizing the strongly-coupled phase transition dynamics and estimate the gravitational wave spectrum for each. Pulsar timing arrays (SKA), spaced-based interferometers (BBO, Ultimate-DECIGO,μAres, asteroid ranging), and astrometric measurements (THEIA) all have the potential to explore new regions of Nnaturalness parameter space, complementing probes from next generation cosmic microwave background radiation experiments.more » « less
-
Abstract It has recently been pointed out that Gaia is capable of detecting a stochastic gravitational wave background in the sensitivity band between the frequency of pulsar timing arrays and LISA. We argue that Gaia and Theia have great potential for early universe cosmology, since such a frequency range is ideal for probing phase transitions in asymmetric dark matter, SIMP and the cosmological QCD transition. Furthermore, there is the potential for detecting primordial black holes in the solar mass range produced during such an early universe transition and distinguish them from those expected from the QCD epoch. Finally, we discuss the potential for Gaia and Theia to probe topological defects and the ability of Gaia to potentially shed light on the recent NANOGrav results.more » « less
-
A bstract We consider gravitational sound wave signals produced by a first-order phase transition in a theory with a generic renormalizable thermal effective potential of power law form. We find the frequency and amplitude of the gravitational wave signal can be related in a straightforward manner to the parameters of the thermal effective potential. This leads to a general conclusion; if the mass of the dark Higgs is less than 1% of the dark Higgs vacuum expectation value, then the gravitational wave signal will be unobservable at all upcoming and planned gravitational wave observatories. Although the understanding of gravitational wave production at cosmological phase transitions is still evolving, we expect this result to be robust.more » « less
-
This is the first part of the four-paper sequence, which establishes the Threshold Conjecture and the Soliton Bubbling vs. Scattering Dichotomy for the energy critical hyperbolic Yang-Mills equation in the (4 + 1)-dimensional Minkowski space-time. The primary subject of this paper, however, is another PDE, namely the energy critical Yang-Mills heat flow on the 4-dimensional Euclidean space. Our first goal is to establish sharp criteria for global existence and asymptotic convergence to a flat connection for this system in H1, including the Dichotomy Theorem (i.e., either the above properties hold or a harmonic Yang-Mills connection bubbles off) and the Threshold Theorem (i.e., if the initial energy is less than twice that of the ground state, then the above properties hold). Our second goal is to use the Yang-Mills heat flow in order to define the caloric gauge, which will play a major role in the analysis of the hyperbolic Yang-Mills equation in the subsequent papers.more » « less
An official website of the United States government

