skip to main content


Title: Gravitational waves from dark Yang-Mills sectors
A bstract Dark Yang-Mills sectors, which are ubiquitous in the string landscape, may be reheated above their critical temperature and subsequently go through a confining first-order phase transition that produces stochastic gravitational waves in the early universe. Taking into account constraints from lattice and from Yang-Mills (center and Weyl) symmetries, we use a phenomenological model to construct an effective potential of the semi quark-gluon plasma phase, from which we compute the gravitational wave signal produced during confinement for numerous gauge groups. The signal is maximized when the dark sector dominates the energy density of the universe at the time of the phase transition. In that case, we find that it is within reach of the next-to-next generation of experiments (BBO, DECIGO) for a range of dark confinement scales near the weak scale.  more » « less
Award ID(s):
1848089 1913328
NSF-PAR ID:
10273197
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    It has been argued that the Randall-Sundrum (RS) phase transition rate is suppressed when the holographic theory corresponds to a largeNYang-Mills and when the stabilizing field has a small mass. Here we argue that self-interactions can alleviate the latter suppression. We consider a cubic term in the bulk potential for the Goldberger-Wise (GW) scalar that is responsible for stabilizing the RS geometry. Adding a cubic term suffices to separate the two roles of the GW stabilization: generating a large hierarchy and triggering confinement. We study the resulting radion potential and the dynamics of the early universe phase transition. For a negative coefficient of the cubic term, the effect of the cubic becomes important in the infra-red, and the resulting radion potential is deeper, thereby increasing the radion mass while maintaining a large hierarchy. Staying within the radion effective field theory, we calculate the rate of bubble nucleation from the hot phase to the confined RS phase, both in thin and thick wall limits. The cubic term enhances the rate and allows relaxing the condition on the maximum number of colorsNmaxof the dual theory for which the phase transition can be completed. Importantly, this reduces the amount of supercooling that the false vacuum undergoes, increases the peak frequency of the gravitational waves (GW) produced from bubble collisions, and reduces the strength of the GW signal. The reduced GW signal is however still within the reach of proposed space-based GW detectors.

     
    more » « less
  2. null (Ed.)
    A bstract We study the cosmological transition of 5D warped compactifications, from the high-temperature black-brane phase to the low-temperature Randall-Sundrum I phase. The transition proceeds via percolation of bubbles of IR-brane nucleating from the black-brane horizon. The violent bubble dynamics can be a powerful source of observable stochastic gravitational waves. While bubble nucleation is non-perturbative in 5D gravity, it is amenable to semiclassical treatment in terms of a “bounce” configuration interpolating between the two phases. We demonstrate how such a bounce configuration can be smooth enough to maintain 5D effective field theory control, and how a simple ansatz for it places a rigorous lower-bound on the transition rate in the thin-wall regime, and gives plausible estimates more generally. When applied to the Hierarchy Problem, the minimal Goldberger-Wise stabilization of the warped throat leads to a slow transition with significant supercooling. We demonstrate that a simple generalization of the Goldberger-Wise potential modifies the IR-brane dynamics so that the transition completes more promptly. Supercooling determines the dilution of any (dark) matter abundances generated before the transition, potentially at odds with data, while the prompter transition resolves such tensions. We discuss the impact of the different possibilities on the strength of the gravitational wave signals. Via AdS/CFT duality the warped transition gives a theoretically tractable holographic description of the 4D Composite Higgs (de)confinement transition. Our generalization of the Goldberger-Wise mechanism is dual to, and concretely models, our earlier proposal in which the composite dynamics is governed by separate UV and IR RG fixed points. The smooth 5D bounce configuration we introduce complements the 4D dilaton/radion dominance derivation presented in our earlier work. 
    more » « less
  3. Abstract

    Constraining the distribution of small-scale structure in our universe allows us to probe alternatives to the cold dark matter paradigm. Strong gravitational lensing offers a unique window into small dark matter halos (<1010M) because these halos impart a gravitational lensing signal even if they do not host luminous galaxies. We create large data sets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST’s COSMOS field. Using a simulation-based inference pipeline, we train a neural posterior estimator of the subhalo mass function (SHMF) and place constraints on populations of lenses generated using a separate set of galaxy sources. We find that by combining our network with a hierarchical inference framework, we can both reliably infer the SHMF across a variety of configurations and scale efficiently to populations with hundreds of lenses. By conducting precise inference on large and complex simulated data sets, our method lays a foundation for extracting dark matter constraints from the next generation of wide-field optical imaging surveys.

     
    more » « less
  4. Abstract It has recently been pointed out that Gaia is capable of detecting a stochastic gravitational wave background in the sensitivity band between the frequency of pulsar timing arrays and LISA. We argue that Gaia and Theia have great potential for early universe cosmology, since such a frequency range is ideal for probing phase transitions in asymmetric dark matter, SIMP and the cosmological QCD transition. Furthermore, there is the potential for detecting primordial black holes in the solar mass range produced during such an early universe transition and distinguish them from those expected from the QCD epoch. Finally, we discuss the potential for Gaia and Theia to probe topological defects and the ability of Gaia to potentially shed light on the recent NANOGrav results. 
    more » « less
  5. Abstract

    The era of Gravitational-Wave (GW) astronomy will grant the detection of the astrophysical GW background from unresolved mergers of binary black holes, and the prospect of probing the presence of primordial GW backgrounds. In particular, the low-frequency tail of the GW spectrum for causally-generated primordial signals (like a phase transition) offers an excellent opportunity to measure unambiguously cosmological parameters as the equation of state of the universe, or free-streaming particles at epochs well before recombination. We discuss whether this programme is jeopardised by the uncertainties on the astrophysical GW foregrounds that coexist with a primordial background. We detail the motivated assumptions under which the astrophysical foregrounds can be assumed to be known in shape, and only uncertain in their normalisation. In this case, the sensitivity to a primordial signal can be computed by a simple and numerically agile procedure, where the optimal filter function subtracts the components of the astrophysical foreground that are close in spectral shape to the signal. We show that the degradation of the sensitivity to the signal in presence of astrophysical foregrounds is limited to a factor of a few, and only around the frequencies where the signal is closer to the foregrounds. Our results highlight the importance of modelling the contributions of eccentric or intermediate-mass black hole binaries to the GW background, to consolidate the prospects to perform precision cosmology with primordial GW backgrounds.

     
    more » « less