skip to main content

Title: Boosting Coverage-Based Fault Localization via Graph-Based Representation Learning
Coverage-based fault localization has been extensively studied in the literature due to its effectiveness and lightweightness for real-world systems. However, existing techniques often utilize coverage in an oversimplified way by abstracting detailed coverage into numbers of tests or boolean vectors, thus limiting their effectiveness in practice. In this work, we present a novel coverage-based fault localization technique, Grace, which fully utilizes detailed coverage information with graph-based representation learning. Our intuition is that coverage can be regarded as connective relationships between tests and program entities, which can be inherently and integrally represented by a graph structure: with tests and program entities as nodes, while with coverage and code structures as edges. Therefore, we first propose a novel graph-based representation to reserve all detailed coverage information and fine-grained code structures into one graph. Then we leverage Gated Graph Neural Network to learn valuable features from the graph-based coverage representation and rank program entities in a listwise way. Our evaluation on the widely used benchmark Defects4J (V1.2.0) shows that Grace significantly outperforms state-of-the-art coverage-based fault localization: Grace localizes 195 bugs within Top-1 whereas the best compared technique can at most localize 166 bugs within Top-1. We further investigate the impact of each Grace more » component and find that they all positively contribute to Grace. In addition, our results also demonstrate that Grace has learnt essential features from coverage, which are complementary to various information used in existing learning-based fault localization. Finally, we evaluate Grace in the cross-project prediction scenario on extra 226 bugs from Defects4J (V2.0.0), and find that Grace consistently outperforms state-of-the-art coverage-based techniques. « less
; ; ; ; ; ; ;
Award ID(s):
1763906 1942430 2131943
Publication Date:
Journal Name:
ACM SIGSOFT International Symposium on the Foundations of Software Engineering
Sponsoring Org:
National Science Foundation
More Like this
  1. Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL not only improves fault localization for manual repair, but also extends the application scope of automated repair to all possible bugs (not only the small ratio of bugs that can be automatically fixed). However, ProFL only considers one APR system (i.e., PraPR), and it is not clear how other existing APR systems based on different designs contribute to unified debugging. In this work, we perform an extensive study of the unified-debugging approach on 16 state-of-the-art program repair systems for the first time. Our experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified debugging, such as (1) nearly all themore »studied 16 repair systems can positively contribute to unified debugging despite their varying repairing capabilities, (2) repair systems targeting multi-edit patches can bring extraneous noise into unified debugging, (3) repair systems with more executed/plausible patches tend to perform better for unified debugging, and (4) unified debugging effectiveness does not rely on the availability of correct patches in automated repair. Based on our results, we further propose an advanced unified debugging technique, UniDebug++, which can localize over 20% more bugs within Top-1 positions than state-of-the-art unified debugging technique, ProFL.« less
  2. A large body of research efforts have been dedicated to automated software debugging, including both automated fault localization and program repair. However, existing fault localization techniques have limited effectiveness on real-world software systems while even the most advanced program repair techniques can only fix a small ratio of real-world bugs. Although fault localization and program repair are inherently connected, their only existing connection in the literature is that program repair techniques usually use off-the-shelf fault localization techniques (e.g., Ochiai) to determine the potential candidate statements/elements for patching. In this work, we propose the unified debugging approach to unify the two areas in the other direction for the first time, i.e., can program repair in turn help with fault localization? In this way, we not only open a new dimension for more powerful fault localization, but also extend the application scope of program repair to all possible bugs (not only the bugs that can be directly automatically fixed). We have designed ProFL to leverage patch-execution results (from program repair) as the feedback information for fault localization. The experimental results on the widely used Defects4J benchmark show that the basic ProFL can already at least localize 37.61% more bugs within Top-1 thanmore »state-of-the-art spectrum and mutation based fault localization. Furthermore, ProFL can boost state-of-the-art fault localization via both unsupervised and supervised learning. Meanwhile, we have demonstrated ProFL's effectiveness under different settings and through a case study within Alipay, a popular online payment system with over 1 billion global users.« less
  3. Learning-based fault localization has been intensively studied recently. Prior studies have shown that traditional Learning-to-Rank techniques can help precisely diagnose fault locations using various dimensions of fault-diagnosis features, such as suspiciousness values computed by various off-the-shelf fault localization techniques. However, with the increasing dimensions of features considered by advanced fault localization techniques, it can be quite challenging for the traditional Learning-to-Rank algorithms to automatically identify effective existing/latent features. In this work, we propose DeepFL, a deep learning approach to automatically learn the most effective existing/latent features for precise fault localization. Although the approach is general, in this work, we collect various suspiciousness-value-based, fault-proneness-based and textual-similarity-based features from the fault localization, defect prediction and information retrieval areas, respectively. DeepFL has been studied on 395 real bugs from the widely used Defects4J benchmark. The experimental results show DeepFL can significantly outperform state-of-the-art TraPT/FLUCCS (e.g., localizing 50+ more faults within Top-1). We also investigate the impacts of deep model configurations (e.g., loss functions and epoch settings) and features. Furthermore, DeepFL is also surprisingly effective for cross-project prediction.
  4. Inferring program transformations from concrete program changes has many potential uses, such as applying systematic program edits, refactoring, and automated program repair. Existing work for inferring program transformations usually rely on statistical information over a potentially large set of program-change examples. However, in many practical scenarios we do not have such a large set of program-change examples. In this paper, we address the challenge of inferring a program transformation from one single example. Our core insight is that "big code" can provide effective guide for the generalization of a concrete change into a program transformation, i.e., code elements appearing in many files are general and should not be abstracted away. We first propose a framework for transformation inference, where programs are represented as hypergraphs to enable fine-grained generalization of transformations. We then design a transformation inference approach, GENPAT, that infers a program transformation based on code context and statistics from a big code corpus. We have evaluated GENPAT under two distinct application scenarios, systematic editing and program repair. The evaluation on systematic editing shows that GENPAT significantly outperforms a state-of-the-art approach, SYDIT, with up to 5.5x correctly transformed cases. The evaluation on program repair suggests that GENPAT has the potentialmore »to be integrated in advanced program repair tools-GENPAT successfully repaired 19 real-world bugs in the Defects4J benchmark by simply applying transformations inferred from existing patches, where 4 bugs have never been repaired by any existing technique. Overall, the evaluation results suggest that GENPAT is effective for transformation inference and can potentially be adopted for many different applications.« less
  5. Compiler bugs are extremely harmful, but are notoriously difficult to debug because compiler bugs usually produce few debugging information. Given a bug-triggering test program for a compiler, hundreds of compiler files are usually involved during compilation, and thus are suspect buggy files. Although there are lots of automated bug isolation techniques, they are not applicable to compilers due to the scalability or effectiveness problem. To solve this problem, in this paper, we transform the compiler bug isolation problem into a search problem, i.e., searching for a set of effective witness test programs that are able to eliminate innocent compiler files from suspects. Based on this intuition, we propose an automated compiler bug isolation technique, DiWi, which (1) proposes a heuristic-based search strategy to generate such a set of effective witness test programs via applying our designed witnessing mutation rules to the given failing test program, and (2) compares their coverage to isolate bugs following the practice of spectrum-based bug isolation. The experimental results on 90 real bugs from popular GCC and LLVM compilers show that DiWi effectively isolates 66.67%/78.89% bugs within Top-10/Top-20 compiler files, significantly outperforming state-of-the-art bug isolation techniques.