skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the tensor rank of the 3 x 3 permanent and determinant
The tensor rank and border rank of the $$3 \times 3$$ determinant tensor are known to be $$5$$ if the characteristic is not two. In characteristic two, the existing proofs of both the upper and lower bounds fail. In this paper, we show that the tensor rank remains $$5$$ for fields of characteristic two as well.  more » « less
Award ID(s):
1900460
PAR ID:
10273416
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Electronic Journal of Linear Algebra
Volume:
37
ISSN:
1081-3810
Page Range / eLocation ID:
425 to 433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We give new and efficient black-box reconstruction algorithms for some classes of depth-3 arithmetic circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a constant-rank tensor. More specifically, we provide efficient learning algorithms that run in randomized polynomial time over general fields and in deterministic polynomial time over and for the following classes: 1) Set-multilinear depth-3 circuits of constant top fan-in ((k) circuits). As a consequence of our algorithm, we obtain the first polynomial time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank tensors. This result holds for d dimensional tensors for any d, but is interesting even for d=3. 2) Sums of powers of constantly many linear forms ((k) circuits). As a consequence we obtain the first polynomial-time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank symmetric tensors. 3) Multilinear depth-3 circuits of constant top fan-in (multilinear (k) circuits). Our algorithm works over all fields of characteristic 0 or large enough characteristic. Prior to our work the only efficient algorithms known were over polynomially-sized finite fields (see. Karnin-Shpilka 09’). Prior to our work, the only polynomial-time or even subexponential-time algorithms known (deterministic or randomized) for subclasses of (k) circuits that also work over large/infinite fields were for the setting when the top fan-in k is at most 2 (see Sinha 16’ and Sinha 20’). 
    more » « less
  2. Guruswami, Venkatesan (Ed.)
    Generalizing work of Künnemann, Paturi, and Schneider [ICALP 2017], we study a wide class of high-dimensional dynamic programming (DP) problems in which one must find the shortest path between two points in a high-dimensional grid given a tensor of transition costs between nodes in the grid. This captures many classical problems which are solved using DP such as the knapsack problem, the airplane refueling problem, and the minimal-weight polygon triangulation problem. We observe that for many of these problems, the tensor naturally has low tensor rank or low slice rank. We then give new algorithms and a web of fine-grained reductions to tightly determine the complexity of these problems. For instance, we show that a polynomial speedup over the DP algorithm is possible when the tensor rank is a constant or the slice rank is 1, but that such a speedup is impossible if the tensor rank is slightly super-constant (assuming SETH) or the slice rank is at least 3 (assuming the APSP conjecture). We find that this characterizes the known complexities for many of these problems, and in some cases leads to new faster algorithms. 
    more » « less
  3. We answer a question, posed implicitly in [P. Bürgisser et al., 1997] and explicitly in [M. Bläser, 2013], showing the border rank of the Kronecker square of the little Coppersmith-Winograd tensor is the square of the border rank of the tensor for all q>2, a negative result for complexity theory. We further show that when q>4, the analogous result holds for the Kronecker cube. In the positive direction, we enlarge the list of explicit tensors potentially useful for the laser method. We observe that a well-known tensor, the 3 × 3 determinant polynomial regarded as a tensor, det_3 ∈ C^9 ⊗ C^9 ⊗ C^9, could potentially be used in the laser method to prove the exponent of matrix multiplication is two. Because of this, we prove new upper bounds on its Waring rank and rank (both 18), border rank and Waring border rank (both 17), which, in addition to being promising for the laser method, are of interest in their own right. We discuss "skew" cousins of the little Coppersmith-Winograd tensor and indicate why they may be useful for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C^3 ⊗ C^3 ⊗ C^3. 
    more » « less
  4. Byrka, Jaroslaw; Meka, Raghu (Ed.)
    In this work, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over F₂. We show the following results for multilinear forms and tensors. Correlation bounds. We show that a random d-linear form has exponentially low correlation with low-degree polynomials. More precisely, for d = 2^{o(k)}, we show that a random d-linear form f(X₁,X₂, … , X_d) : (F₂^{k}) ^d → F₂ has correlation 2^{-k(1-o(1))} with any polynomial of degree at most d/2 with high probability. This result is proved by giving near-optimal bounds on the bias of a random d-linear form, which is in turn proved by giving near-optimal bounds on the probability that a sum of t random d-dimensional rank-1 tensors is identically zero. Tensor rank vs Bias. We show that if a 3-dimensional tensor has small rank then its bias, when viewed as a 3-linear form, is large. More precisely, given any 3-dimensional tensor T: [k]³ → F₂ of rank at most t, the bias of the 3-linear form f_T(X₁, X₂, X₃) : = ∑_{(i₁, i₂, i₃) ∈ [k]³} T(i₁, i₂, i₃)⋅ X_{1,i₁}⋅ X_{2,i₂}⋅ X_{3,i₃} is at least (3/4)^t. This bias vs tensor-rank connection suggests a natural approach to proving nontrivial tensor-rank lower bounds. In particular, we use this approach to give a new proof that the finite field multiplication tensor has tensor rank at least 3.52 k, which is the best known rank lower bound for any explicit tensor in three dimensions over F₂. Moreover, this relation between bias and tensor rank holds for d-dimensional tensors for any fixed d. 
    more » « less
  5. We prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor Tcw,q is the square of its border rank for q > 2 and that the border rank of its Kronecker cube is the cube of its border rank for q > 4. This answers questions raised implicitly by Coppersmith & Winograd (1990, §11) and explicitly by Bl¨aser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range. In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen’s laser method, introducing a skew-symmetric version of the Coppersmith– Winograd tensor, Tskewcw,q. For q = 2, the Kronecker square of this tensor coincides with the 3 × 3 determinant polynomial, det3 ∈ C9 ⊗ C9 ⊗ C9, regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two. We determine new upper bounds for the (Waring) rank and the (Waring) border rank of det3, exhibiting a strict submultiplicative behaviour for Tskewcw,2 which is promising for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C3 ⊗ C3 ⊗ C3. 
    more » « less