skip to main content

Title: Generation of Bessel-beam arrays for parallel fabrication in two-photon polymerization
This proceeding was published in a special issue of J. Laser Appl. as: H. Cheng, C. Xia, S. M. Kuebler, P. Golvari, M. Sun, M. Zhang, X. Yu*. "Generation of Bessel-beam arrays for parallel fabrication in two-photon polymerization." J. Laser Appl. 2021, 33, 012040-1 - 012040-6; https://doi.org/10.2351/7.0000313.
Authors:
; ; ; ; ; ;
Award ID(s):
1711356
Publication Date:
NSF-PAR ID:
10273498
Journal Name:
NANO 3: Custom Nanomanufacturing, a conference held as part of the 39th International Congress on Applications of Lasers & Electro-Optics (ICALEO)
Sponsoring Org:
National Science Foundation
More Like this
  1. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments andmore »modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018).« less
  2. We consider a class of macroscopic models for the spatio-temporal evolution of urban crime, as originally going back to Ref. 29 [M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci. 18 (2008) 1249–1267]. The focus here is on the question of how far a certain porous medium enhancement in the random diffusion of criminal agents may exert visible relaxation effects. It is shown that sufficient regularity of the non-negative source terms in the system and amore »sufficiently strong nonlinear enhancement ensure that a corresponding Neumann-type initial–boundary value problem, posed in a smoothly bounded planar convex domain, admits locally bounded solutions for a wide class of arbitrary initial data. Furthermore, this solution is globally bounded under mild additional conditions on the source terms. These results are supplemented by numerical evidence which illustrates smoothing effects in solutions with sharply structured initial data in the presence of such porous medium-type diffusion and support the existence of singular structures in the linear diffusion case, which is the type of diffusion proposed in Ref. 29.« less
  3. Abstract In this paper we study in detail a variation of the orthonormal bases (ONB) of L2[0, 1] introduced in [Dutkay D. E., Picioroaga G., Song M. S., Orthonormal bases generated by Cuntz algebras, J. Math. Anal. Appl., 2014, 409(2), 1128-1139] by means of representations of the Cuntz algebra ON on L2[0, 1]. For N = 2 one obtains the classic Walsh system which serves as a discrete analog of the Fourier system. We prove that the generalized Walsh system does not always display periodicity, or invertibility, with respect to function multiplication. After characterizing these two properties we also showmore »that the transform implementing the generalized Walsh system is continuous with respect to filter variation. We consider such transforms in the case when the orthogonality conditions in Cuntz relations are removed. We show that these transforms which still recover information (due to remaining parts of the Cuntz relations) are suitable to use for signal compression, similar to the discrete wavelet transform.« less
  4. Many service systems provide queue length information to customers, thereby allowing customers to choose among many options of service. However, queue length information is often delayed, and it is often not provided in real time. Recent work by Dong et al. [Dong J, Yom-Tov E, Yom-Tov GB (2018) The impact of delay announcements on hospital network coordination and waiting times. Management Sci. 65(5):1969–1994.] explores the impact of these delays in an empirical study in U.S. hospitals. Work by Pender et al. [Pender J, Rand RH, Wesson E (2017) Queues with choice via delay differential equations. Internat. J. Bifurcation Chaos Appl.more »Sci. Engrg. 27(4):1730016-1–1730016-20.] uses a two-dimensional fluid model to study the impact of delayed information and determine the exact threshold under which delayed information can cause oscillations in the dynamics of the queue length. In this work, we confirm that the fluid model analyzed by Pender et al. [Pender J, Rand RH, Wesson E (2017) Queues with choice via delay differential equations. Internat. J. Bifurcation Chaos Appl. Sci. Engrg. 27(4):1730016-1–1730016-20.] can be rigorously obtained as a functional law of large numbers limit of a stochastic queueing process, and we generalize their threshold analysis to arbitrary dimensions. Moreover, we prove a functional central limit theorem for the queue length process and show that the scaled queue length converges to a stochastic delay differential equation. Thus, our analysis sheds new insight on how delayed information can produce unexpected system dynamics.« less
  5. Prior mathematical work of Constantin & Iyer ( Commun. Pure Appl. Maths , vol. 61, 2008, pp. 330–345; Ann. Appl. Probab. , vol. 21, 2011, pp. 1466–1492) has shown that incompressible Navier–Stokes solutions possess infinitely many stochastic Lagrangian conservation laws for vorticity, backward in time, which generalize the invariants of Cauchy ( Sciences mathématiques et physique , vol. I, 1815, pp. 33–73) for smooth Euler solutions. We reformulate this theory for the case of wall-bounded flows by appealing to the Kuz'min ( Phys. Lett. A , vol. 96, 1983, pp. 88–90)–Oseledets ( Russ. Math. Surv. , vol. 44, 1989, p.more »210) representation of Navier–Stokes dynamics, in terms of the vortex-momentum density associated to a continuous distribution of infinitesimal vortex rings. The Constantin–Iyer theory provides an exact representation for vorticity at any interior point as an average over stochastic vorticity contributions transported from the wall. We point out relations of this Lagrangian formulation with the Eulerian theory of Lighthill (Boundary layer theory. In Laminar Boundary Layers (ed. L. Rosenhead), 1963, pp. 46–113)–Morton ( Geophys. Astrophys. Fluid Dyn. , vol. 28, 1984, pp. 277–308) for vorticity generation at solid walls, and also with a statistical result of Taylor ( Proc. R. Soc. Lond. A , vol. 135, 1932, pp. 685–702)–Huggins ( J. Low Temp. Phys. , vol. 96, 1994, pp. 317–346), which connects dissipative drag with organized cross-stream motion of vorticity and which is closely analogous to the ‘Josephson–Anderson relation’ for quantum superfluids. We elaborate a Monte Carlo numerical Lagrangian scheme to calculate the stochastic Cauchy invariants and their statistics, given the Eulerian space–time velocity field. The method is validated using an online database of a turbulent channel-flow simulation (Graham et al. , J. Turbul. , vol. 17, 2016, pp. 181–215), where conservation of the mean Cauchy invariant is verified for two selected buffer-layer events corresponding to an ‘ejection’ and a ‘sweep’. The variances of the stochastic Cauchy invariants grow exponentially backward in time, however, revealing Lagrangian chaos of the stochastic trajectories undergoing both fluid advection and viscous diffusion.« less