skip to main content


Title: Generation of Bessel-beam arrays for parallel fabrication in two-photon polymerization
This proceeding was published in a special issue of J. Laser Appl. as: H. Cheng, C. Xia, S. M. Kuebler, P. Golvari, M. Sun, M. Zhang, X. Yu*. "Generation of Bessel-beam arrays for parallel fabrication in two-photon polymerization." J. Laser Appl. 2021, 33, 012040-1 - 012040-6; https://doi.org/10.2351/7.0000313.  more » « less
Award ID(s):
1711356
NSF-PAR ID:
10273498
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
NANO 3: Custom Nanomanufacturing, a conference held as part of the 39th International Congress on Applications of Lasers & Electro-Optics (ICALEO)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The temporomandibular joint disk (TMJd) is an extremely dense and avascular fibrocartilaginous extracellular matrix (ECM) resulting in a limited regenerative capacity. The use of decellularized TMJdas a biocompatible scaffold to guide tissue regeneration is restricted by innate subcellular porosity of the ECM that hinders cellular infiltration and regenerative events. Incorporation of an artificial microporosity through laser micro‐ablation (LMA) can alleviate these cell and diffusion based limitations. In this study, LMA was performed either before or after decellularization to assess to effect of surfactant treatment on porosity modification as well as the resultant mechanical and physical scaffold properties. Under convective flow or agitation schemes, pristine and laser ablated disks were decellularized using either low (0.1% w/v) or high (1% w/v) concentrations of sodium dodecyl sulfate (SDS). Results show that lower concentrations of SDS minimized collagen degradation and tissue swelling while retaining its capacity to solubilize cellular content. Regardless of processing scheme, laser ablated channels incorporated after SDS treatment were relatively smaller and more uniform than those incorporated before SDS treatment, indicating an altered laser interaction with surfactant treated tissues. Smaller channels correlated with less disruption of native biomechanical properties indicating surfactant pre‐treatment is an important consideration when using LMA to produce artificial porosity inex vivoderived tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1858–1868, 2018.

     
    more » « less
  2. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  3. Abstract

    Glass optical fibers have reached a scale and commercial maturity that few, if any, other material and form can claim. Furthermore, optical fibers not only enable a remarkably broad range of applications but are, themselves, unique tools for fundamental studies into light‐matter interactions. That said, despite such ubiquity and global impact, increasing demands from existing systems, coupled with new expectations from novel emerging technologies, are necessitating a remarkably creative renaissance in optical fiber materials, structures, and processing methodologies. This paper, a follow‐on to a previous historical retrospective [Ballato and Dragic, Int. J. Appl. Glass Sci. 7, 413 (2016)], discusses current and future trends, recent advances in optical fiber materials, processing and properties, and muses about their forthcoming prospects and areas for further study and development. Specifically, optical fibers employed in present and future communications, sensors, and laser systems are discussed along with material innovations that could yield revolutionary advances in performance or manufacturability.

     
    more » « less
  4. ABSTRACT

    The polymerization of biorenewable molecules to polymers with hydrolyzable main‐chain functionality is one approach to identifying sustainable replacements for common, environmentally unsound packaging plastics. Bioaromatic polyacetals were synthesized via acid‐catalyzed acetal formation from dialdehydes and tetraols. Ethylene linked dialdehyde monomersVVandSSwere constructed from bioaromatics vanillin and syringaldehyde, respectively. Tetraol monomers included biogenic erythritol (E), along with pentaerythritol (P), and ditrimethylolpropane (D). Four copolymer series were prepared with varying tetraol content:E/PVV;E/DVV;E/PSS; andE/DSS. Number average molecular weights (Mn) ranged from 1,400 to 27,100 Da. Generally, the copolymerization yields were inversely proportional to the feed fraction of erythritol (E), implying that tetraolsPandDreact more readily. The materials were typically amorphous and exhibited glass transition temperatures (Tg) ranging from 57 to 159 °C, suitably mimicking theTgvalues of several commodity plastics. The syringaldehyde‐based copolymers exhibited a higherTgrange (71–159 °C) than the vanillin‐based copolymers (57–110 °C). Accelerated degradation studies in aqueous HCl (3M, 6M, concentrated) over 24 h showed that degradation (Mndecrease) was proportional to the acid concentration. A one‐year degradation study ofE50/D50‐SS(from 50% feed of erythritol) in seawater, deionized water, tap water, or pH 5 buffer showed noMndecrease; but in pH 1 buffer, the decrease was 40% (18,800 to 11,200). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2016,133, 44089.

     
    more » « less
  5. null (Ed.)
    We consider a class of macroscopic models for the spatio-temporal evolution of urban crime, as originally going back to Ref. 29 [M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci. 18 (2008) 1249–1267]. The focus here is on the question of how far a certain porous medium enhancement in the random diffusion of criminal agents may exert visible relaxation effects. It is shown that sufficient regularity of the non-negative source terms in the system and a sufficiently strong nonlinear enhancement ensure that a corresponding Neumann-type initial–boundary value problem, posed in a smoothly bounded planar convex domain, admits locally bounded solutions for a wide class of arbitrary initial data. Furthermore, this solution is globally bounded under mild additional conditions on the source terms. These results are supplemented by numerical evidence which illustrates smoothing effects in solutions with sharply structured initial data in the presence of such porous medium-type diffusion and support the existence of singular structures in the linear diffusion case, which is the type of diffusion proposed in Ref. 29. 
    more » « less