skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal comfort modeling when personalized comfort systems are in use: Comparison of sensing and learning methods
Award ID(s):
1763134
PAR ID:
10273770
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Building and Environment
Volume:
185
Issue:
C
ISSN:
0360-1323
Page Range / eLocation ID:
107316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
    Buildings use 40% of the global energy consumption and emit 30% of the CO2 emissions [1]. Of the total building energy, 30-40% are for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. In the United States, most buildings use forced air technology to deliver heating/cooling to the targeted thermal zones. However, this system may cause complaints about thermal comfort from inhabitants due to excessive draft movement, inhomogeneous conditioning, and difficulty in accurately controlling the temperature for a system serving multiple rooms. Therefore, researchers have suggested using a radiant heating and cooling system as a better alternative to all-air systems to address these issues. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. In the cooling season, the radiant system often works with a separated dehumidifier to meet space latent and sensible cooling load (called separate sensible and latent cooling system SSLC). The SSLC has shown higher efficiency than forced air systems. However, it is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants. Moreover, the evaluation method for thermal comfort in the current standard is suitable for forced air systems. Therefore, a new method shall be developed to evaluate the radiation system’s thermal comfort. In this paper, we review the experiment-based studies on the thermal comfort of radiant systems. According to the experimental studies regarding thermal comfort and radiant systems, the key findings are concluded to help guide the evaluation of thermal comfort for radiant systems. 
    more » « less
  3. Buildings use 40% of the global energy consumption and emit 30% of CO2 emissions. Of the total building energy, 30-40% is for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. Most buildings use forced air technology in the United States to deliver heating/cooling to the targeted thermal zones. Researchers have suggested using radiant heating and cooling systems as a better alternative to all-air systems. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. It is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants. Moreover, the evaluation method for thermal comfort in the current standard is only suitable for forced air systems. A new plan shall be developed to evaluate the radiation system’s thermal comfort. This paper reviews the experiment-based studies on the thermal comfort of radiant systems. According to the experimental studies regarding thermal comfort and radiant systems, the key findings are concluded to help guide the evaluation of thermal comfort for radiant systems. 
    more » « less
  4. Lighting, as a significant component of indoor environment quality, was found to be a primary contributor to deficient indoor environments in today’s workplace. This resulted from the fact that current guidelines are derived from empirical values and neglect the prevalence of computer-based tasks in current offices. A personal visual comfort model was designed to predict the degree of an individual’s visual comfort, as a way of evaluating the indoor lighting of the environment. Development of the model relied on experimental data, including individual eye pupil sizes, visual sensations, and visual satisfaction in response to various illuminance levels used for tests of six human subjects. The results showed that (1) A personal comfort model was needed, (2) the personal comfort model produced a median accuracy of 0.7086 for visual sensation and 0.65467 for visual satisfaction for all subjects; (3) To develop a prediction model for the sample group, the Support Vector Machine algorithm,, outperformed the Logistic Regression and the Gaussian Naïve Bayes in terms of prediction accuracy. It was concluded that, a personal visual comfort model can use a building’s occupant’s eye pupil size to generate an accurate prediction of that occupant’s visual sensations and visual satisfaction that can, therefore, be applied with lighting control to improve the indoor environment and energy use in that building. 
    more » « less
  5. This study presents a vision-based approach that employs RGB video images as the sole source for inferring thermoregulation states in the human body in response to thermal condition variations in indoor environments. The primary objective is to contribute to our envisioned thermoregulation-based HVAC control that leverages actual thermal demands from end-users’ thermoregulation states for increased energy efficiency. Given that the envisioned control system calls for measurement techniques under four constraints of non-intrusiveness, applicability, sensitivity, and ubiquity (i.e., feasibility and scalability), this study investigated the potentials of ubiquitously obtainable RGB video images (through webcams or smartphones). Using photoplethysmography(PPG), a well-known optical technique for measuring blood volume changes in the microvascular bed of skin, we have leveraged the mechanism of blood flow control to the skin surface (blood vessels' dilation and constriction)for heat dissipation regulations, reflected in PPG signal's amplitude. Given the subtle variations of PPG signals and their susceptibility to noise, we proposed a framework that uses a combination of independent component analysis and adaptive filtering to reduce unwanted and in-band artifacts while preserving the amplitude information of PPG signals that indicates thermophysiological states. The framework was experimentally evaluated using transient thermal conditions to account for applicability and sensitivity attributes. Therefore, without considering an acclimation time for stabilized thermoregulation states, human subjects were exposed to varying temperatures (∼20–30 °C) while reporting their thermal sensations. In total, for 10 human subjects out of 15, a positive correlation between vision-based indicators, skin temperature, and thermal sensations were observed demonstrating promising potential in inferring thermal sensations of occupants with sufficient sensitivity 
    more » « less