skip to main content


Title: The Role of Atmospheric Feedbacks in Abrupt Winter Arctic Sea Ice Loss in Future Warming Scenarios
Abstract Winter Arctic sea ice loss has been simulated with varying degrees of abruptness across global climate models (GCMs) run in phase 5 of the Coupled Model Intercomparison Project (CMIP5) under the high-emissions extended RCP8.5 scenario. Previous studies have proposed various mechanisms to explain modeled abrupt winter sea ice loss, such as the existence of a wintertime convective cloud feedback or the role of the freezing point as a natural threshold, but none have sought to explain the variability of the abruptness of winter sea ice loss across GCMs. Here we propose a year-to-year local positive feedback cycle in which warm, open oceans at the start of winter allow for the moistening and warming of the lower atmosphere, which in turn increases the downward clear-sky longwave radiation at the surface and suppresses ocean freezing. This situation leads to delayed and diminished winter sea ice growth and allows for increased shortwave absorption from lowered surface albedo during springtime. Last, the ocean stores this additional heat throughout the summer and autumn seasons, setting up even warmer ocean conditions that lead to further sea ice reduction. We show that the strength of this feedback, as measured by the partial temperature contributions of the different surface heat fluxes, correlates strongly with the abruptness of winter sea ice loss across models. Thus, we suggest that this feedback mechanism may explain intermodel spread in the abruptness of winter sea ice loss. In models in which the feedback mechanism is strong, this may indicate the possibility of hysteresis and thus irreversibility of sea ice loss.  more » « less
Award ID(s):
1924538
NSF-PAR ID:
10274102
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Climate
Volume:
34
Issue:
11
ISSN:
0894-8755
Page Range / eLocation ID:
4435 to 4447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) that captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity alone can produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea ice albedo and thermodynamic effects under CO2forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality.

    Significance Statement

    Under increasing concentrations of atmospheric greenhouse gases, the strongest Arctic warming has occurred during early winter, but the reasons for this seasonal pattern of warming are not well understood. We use experiments in both simple and complex models with certain sea ice processes turned on and off to disentangle potential drivers of seasonality in Arctic warming. When sea ice melts and open ocean is exposed, surface temperatures are slower to reach the warm-season maximum and slower to cool back down below freezing in early winter. We find that this process alone can produce the observed pattern of maximum Arctic warming in early winter, highlighting a fundamental mechanism for the seasonality of Arctic warming.

     
    more » « less
  2. Abstract

    Arctic sea ice extent continues to decline at an unprecedented rate that is commonly underestimated by climate projection models. This disagreement may imply biases in the representation of processes that bring heat to the sea ice in these models. Here we reveal interactions between ocean-ice heat fluxes, sea ice cover, and upper-ocean eddies that constitute a positive feedback missing in climate models. Using an eddy-resolving global ocean model, we demonstrate that ocean-ice heat fluxes are predominantly induced by localized and intermittent ocean eddies, filaments, and internal waves that episodically advect warm subsurface waters into the mixed layer where they are in direct contact with sea ice. The energetics of near-surface eddies interacting with sea ice are modulated by frictional dissipation in ice-ocean boundary layers, being dominant under consolidated winter ice but substantially reduced under low-concentrated weak sea ice in marginal ice zones. Our results indicate that Arctic sea ice loss will reduce upper-ocean dissipation, which will produce more energetic eddies and amplified ocean-ice heat exchange. We thus emphasize the need for sea ice-aware parameterizations of eddy-induced ice-ocean heat fluxes in climate models.

     
    more » « less
  3. Abstract

    Sea‐ice loss and radiative feedbacks have been proposed to explain Arctic amplification (AA)—the enhanced Arctic warming under increased greenhouse gases, but their relationship is unclear. By analyzing coupled CESM1 simulations with 1%/year CO2increases, we show that without large sea‐ice loss and AA, the lapse rate, Planck, and surface albedo feedbacks are greatly reduced, while the positive water vapor feedback changes little. The positive Arctic lapse rate feedback, which results from enhanced surface warming rather than the high stability of Arctic air, and changes in atmospheric energy transport across the Arctic Circle are a result, not a cause, of AA; while the water vapor feedback also plays a minor role. Instead, AA results from enhanced winter oceanic heating associated with sea‐ice loss that is aided by a positive surface albedo feedback in summer and positive cloud feedback in winter.

     
    more » « less
  4. Abstract

    The ice–albedo feedback associated with sea ice loss contributes to polar amplification, while the water vapor feedback contributes to tropical amplification of surface warming. However, these feedbacks are not independent of atmospheric energy transport, raising the possibility of complex interactions that may obscure the drivers of polar amplification, in particular its manifestation across the seasonal cycle. Here, we apply a radiative transfer hierarchy to an idealized aquaplanet global climate model coupled to a thermodynamic sea ice model. The climate responses and radiative feedbacks are decomposed into the contributions from sea ice loss, including both retreat and thinning, and the radiative effect of water vapor changes. We find that summer sea ice retreat causes winter polar amplification through ocean heat uptake and release, and the resulting decrease in dry energy transport weakens the magnitude of warming. Moreover, sea ice thinning is found to suppress summer warming and enhance winter warming, additionally contributing to winter amplification. The water vapor radiative effect produces seasonally symmetric polar warming via offsetting effects: enhanced moisture in the summer hemisphere induces the summer water vapor feedback and simultaneously strengthens the winter latent energy transport in the winter hemisphere by increasing the meridional moisture gradient. These results reveal the importance of changes in atmospheric energy transport induced by sea ice retreat and increased water vapor to seasonal polar amplification, elucidating the interactions among these physical processes.

     
    more » « less
  5. Abstract

    The mechanisms that control the export of freshwater from the East Greenland Current, in both liquid and solid form, are explored using an idealized numerical model and scaling theory. A regional, coupled ocean–sea ice model is applied to a series of calculations in which key parameters are varied and the scaling theory is used to interpret the model results. The offshore ice flux, occurring in late winter, is driven primarily by internal stresses and is most sensitive to the thickness of sea ice on the shelf coming out of Fram Strait and the strength of alongshore winds over the shelf. The offshore liquid freshwater flux is achieved by eddy fluxes in late summer while there is an onshore liquid freshwater flux in winter due to the ice–ocean stress, resulting in only weak annual mean flux. The scaling theory identifies the key nondimensional parameters that control the behavior and reproduces the general parameter dependence found in the numerical model. Climate models predict that winds will increase and ice export from the Arctic will decrease in the future, both of which will lead to a decrease in the offshore flux of sea ice, while the influence on liquid freshwater may increase or decrease, depending on the relative changes in the onshore Ekman transport and offshore eddy fluxes. Additional processes that have not been considered here, such as more complex topography and synoptic wind events, may also contribute to cross-shelf exchange.

    Significance Statement

    The purpose of this study is to provide a basic understanding of what controls the flux of sea ice and low-salinity water from the East Greenland shelf into the interior of the Greenland and Iceland Seas. This is a potentially important process since it has been shown that sufficient freshening of the surface waters in the interior of the Nordic seas can inhibit deep convection and the associated air–sea heat flux and water mass transformation. A combination of idealized computer models and basic theory indicates that the fluxes of liquid and solid freshwater are controlled by different mechanisms and occur at different times of the year. Accurate representation in climate models will require representation of small-scale processes such as mesoscale eddies and gradients of ice thickness across the shelf.

     
    more » « less