The global COVID-19 pandemic has disrupted normal face-to-face classes across institutions. This has significantly impacted methods courses where preservice teachers (PSTs) practice pedagogy in the field (e.g., in the PreK-12 classroom). In this paper, we describe efforts to adapt an assignment originally situated in a face-to-face school placement into a virtual version. By utilizing multi-perspective 360 video, preliminary results suggest virtual field experiences can provide PSTs with similar experiences for observation-based assignments. Acknowledging that immersive virtual experiences are not a complete replacement for face-to-face field-based experiences, we suggest virtual field assignments can be a useful supplement or a viable alternative during a time of the pandemic.
more »
« less
Creating asynchronous virtual field experiences with 360 video
The global COVID-19 pandemic has disrupted normal face-to-face classes across institutions. This has significantly impacted methods courses where preservice teachers (PSTs) practice pedagogy in the field (e.g., in the PreK-12 classroom). In this paper, we describe efforts to adapt an assignment originally situated in a face-to-face school placement into a virtual version. By utilizing multi-perspective 360 video, preliminary results suggest virtual field experiences can provide PSTs with similar experiences for observation-based assignments. Acknowledging that immersive virtual experiences are not a complete replacement for face-to-face field-based experiences, we suggest virtual field assignments can be a useful supplement or a viable alternative during a time of pandemic.
more »
« less
- Award ID(s):
- 1908159
- PAR ID:
- 10274531
- Date Published:
- Journal Name:
- Journal of technology and teacher education
- Volume:
- 28
- Issue:
- 2
- ISSN:
- 1059-7069
- Page Range / eLocation ID:
- 315-320
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Langran, E. (Ed.)Over the last two years, the COVID-19 pandemic has required teacher educators to teach their classes online. Teacher educators now need to reflect on the learning opportunities that the COVID-19 induced shift to online learning has provided. This study shares two teacher educators’ experiences of teaching and supporting preservice teachers (PSTs) as they taught engineering online to elementary students. The two teacher educators noticed (a) positive changes in PSTs’ attitudes and beliefs about technology integration, (b) PSTs’ tendency to select and use of educational technologies, (c) PSTs’ recognition of the importance of online interaction and feedback from K-12 students, (d) the importance of providing PSTs with extended access to physical hardware, and (e) the importance of providing developmentally appropriate digital resources. The paper concludes with suggestions for teacher educators who are preparing PSTs for the next generation of teaching.more » « less
-
Abstract Preparing preservice teachers (PSTs) to be able to notice, interpret, respond to and orchestrate student ideas—the core practices of responsive teaching—is a key goal for contemporary science and mathematics teacher education. This mixed‐methods study, employing a virtual reality (VR)‐supported simulation integrated with artificial intelligence (AI)‐powered virtual students, explored the frequent patterns of PSTs' talk moves as they attempted to orchestrate a responsive discussion, as well as the affordances and challenges of leveraging AI‐supported virtual simulation to enhance PSTs' responsive teaching skills. Sequential analysis of the talk moves of both PSTs (n = 24) and virtual students indicated that although PSTs did employ responsive talk moves, they encountered difficulties in transitioning from the authoritative, teacher‐centred teaching approach to a responsive way of teaching. The qualitative analysis with triangulated dialogue transcripts, observational field notes and semi‐structured interviews revealed participants' engagement in (1) orchestrating discussion by leveraging the design features of AI‐supported simulation, (2) iterative rehearsals through naturalistic and contextualized interactions and (3) exploring realism and boundaries in AI‐powered virtual students. The study findings provide insights into the potential of leveraging AI‐supported virtual simulation to improve PSTs' responsive teaching skills. The study also underscores the need for PSTs to engage in well‐designed pedagogical practices with adaptive and in situ support. Practitioner notesWhat is already known about this topicDeveloping the teaching capacity of responsive teaching is an important goal for preservice teacher (PST) education. PSTs need systematic opportunities to build fluency in this approach.Virtual simulations can provide PSTs with the opportunities to practice interactive teaching and have been shown to improve their teaching skills.Artificial intelligence (AI)‐powered virtual students can be integrated into virtual simulations to enable interactive and authentic practice of teaching.What this paper addsAI‐supported simulation has the potential to support PSTs' responsive teaching skills.While PSTs enact responsive teaching talk moves, they struggle to enact those talk moves in challenging teaching scenarios due to limited epistemic and pedagogical resources.AI‐supported simulation affords iterative and contextualized opportunities for PSTs to practice responsive teaching talk moves; it challenges teachers to analyse student discourse and respond in real time.Implications for practice and/or policyPSTs should build a teaching repertoire with both basic and advanced responsive talk moves.The learning module should adapt to PSTs' prior experience and provide PSTs with in situ learning support to navigate challenging teaching scenarios.Integrating interaction features and AI‐based virtual students into the simulation can facilitate PSTs' active participation.more » « less
-
This paper describes a National Science Foundation-funded Research Experiences for Undergraduates (REU) Site program conducted through virtual working environment. Due to the Covid-19 pandemic, REU 2021 activities were conducted online through Canvas and Zoom communication platforms. The major aim of this program is to provide undergraduate students with experiences in engineering education research (i.e., education research in the context of engineering). This paper provides an overview of the program, and briefly describes the virtual working environment, and students’ research experiences during the 10-week program. A total of 11 undergraduate students, seven graduate mentors, and seven faculty mentors have actively participated in the program. The program is conducted in two phases: Phases 1 (i.e., Weeks 1-2) and 2 (i.e., Weeks 3-10). Phase 1 consists of preparatory and foundational work that is delivered to participants and will allow them to begin Phase 2 with some educational research foundation already established. The results of the project evaluation show that the program has made a positive impact on increasing education research skills and communication skills of the participating REU students. The participating REU students reported that the research projects they worked on increased their motivation and confidence for continuing to engage in engineering education research. Four participants (i.e., 36.4% of the total participants) suggested that, if available, they would prefer face-to-face over a virtual REU program. Another four participants (i.e., 36.4%) felt that both face-to-face and virtual would offer the same quality of research experiences, and 3 participants (i.e., 27.2% of the total participants) voiced their preference of virtual over face-to-face REU program.more » « less
-
Although the effects of COVID-19 were felt by all students, the pandemic exacerbated the barriers to belonging for women in engineering. Little work to date has investigated women’s experiences during the pandemic in disciplines that are hallmarked by masculinity. What scholarship has been completed on pandemic-necessitated virtual instruction has not examined how women’s experiences and sense of belonging differed by the college year in which this disruption in their learning environment occurred. Utilizing data from seven focus groups conducted in March 2022 with 22 students, this study investigates how pandemic-induced virtual instruction is related to sense of belonging for women within their engineering majors. We found not only that the disruption caused by the pandemic had differential outcomes for students, but that these differences were mainly related to the year in which pandemic-induced virtual instruction occurred. This study highlights the importance of focusing on belonging and related issues as women transition into their major. We offer implications and recommendations for practice and research based on the differential outcomes found.more » « less
An official website of the United States government

