skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Robotic System Method and Rebar Construction with Off-the-Shelf Robots
The construction industry has traditionally been a labor-intensive industry. Typically, labor cost takes a significant portion of the total project cost. In spite of the good pay, there was a big gap recently between demand and supply in construction trades position. A survey shows that more than 80% of construction companies in the Midwest of US are facing workforce shortage and suffering in finding enough skilled trades people to hire. This workforce shortage is also nationwide or even worldwide in many places. Construction automation provides a potential solution to mitigate this problem by seeking to replace some of the demanding, repetitive, and/or dangerous construction operations with robotic automation. Currently, robots have been used in bricklaying or heavy-lifting operations in the industry, and other uses remain to be explored. In this paper, the authors proposed a feasibility breakdown structure (FBS)-based robotic system method that can be used to test the feasibility of performing target construction operations with specific robotic systems, including a top-down work breakdown structure and a bottom-up set of feasibility analysis components based on literature search and/or simulation. The proposed method was demonstrated in testing the use of a KUKA robot and a Fetch robot to perform rebar mesh construction. Results showed that the overall workflow is feasible, whereas certain limitations presented in path planning. In addition, a smooth and timely information flow from the Fetch robot sensor and computer vision-based control to the two robots for a coordinated path planning and cooperation is critical for such constructability.  more » « less
Award ID(s):
1827733
PAR ID:
10346904
Author(s) / Creator(s):
; ;
Editor(s):
Issa, R.
Date Published:
Journal Name:
ASCE International Conference on Computing in Civil Engineering 2021
Page Range / eLocation ID:
1204 to 1211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Robotic automation in construction has created the need for new competencies that will enable the workforce to engage with robots safely and effectively. However, differing perceptions between industry professionals and academia make aligning academic programs with industry needs challenging. This study evaluates these perceptions to guide the design of HRC training programs. A three-round Delphi study was conducted separately with panels of industry professionals and academic experts to assess their views on HRC competencies in construction. The findings revealed that both panels identified human–robot interfaces, HRC safety and standards, robot control systems, and construction robot applications as the top five HRC knowledge areas. Industry professionals also emphasized task planning knowledge, while academic experts focused on HRC ethics. Key HRC skills include effective communication, safety management, technical proficiency, and compliance with regulations and standards, with industry professionals prioritizing proficiency in task planning and academics emphasizing human–robot interface proficiency. Both expert panels prioritized teamwork, continuous learning, problem-solving, communication, and adaptability as top-rated HRC abilities. This study contributes to knowledge by defining key HRC competencies and identifying differences in priorities between industry and academia. These insights can guide the development of academic curricula that better align with industry needs, supporting the creation of training programs that equip the workforce with the competencies required for safe and effective robotic collaboration. The study also promotes collaboration between industry and academia, fostering innovation in HRC and robotics in construction. Future research directions are proposed to explore innovative training methods to equip the future workforce with HRC competencies. 
    more » « less
  2. Challenged by the prevalent workforce shortage, the construction industry is picking up interest in using robotic arms in construction operations, especially in the context of modular construction and prefabrication. However, the lack of systematic investigations into integrating robotic arms with mobile systems to enhance mobility and operational range has been identified as one main research gap. Stationary robotic arms have inherent limitations in their range, making mobility a critical need. To address that issue, in this paper, the authors proposed a mobile construction robotic system to facilitate their use in the automation of timber frame assembly operation. The authors simulated the system to assess the interactions and coordination among its various components, and to identify potential areas for improvement. This study showcased the effectiveness of the new system design in improving the timber construction automation process and reveals its potential for further exploration in the realm of mobile construction robotics. 
    more » « less
  3. Abstract Disassembly is an essential step for remanufacturing end-of-life (EOL) products. Optimization of disassembly sequences and the utilization of robotic technology could alleviate the labor-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human–robot collaboration. The proposed framework combines three attributes: disassembly cost, safety, and complexity of disassembly, namely disassembleability, to identify the optimal disassembly path and allocate operations between human and robot. A multi-attribute utility function is used to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly which is assumed to be an uncertain parameter with a Beta distribution; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the protection of human workers in the work environment. An example of dismantling a desktop computer is used to show the application. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations among human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot. 
    more » « less
  4. null (Ed.)
    Advancements in Artificial Intelligence (AI), Information Technology, Augmented Reality (AR) and Virtual Reality (VR), and Robotic Automation is transforming jobs in the Architecture, Engineering and Construction (AEC) industries. However, it is also expected that these technologies will lead to job displacement, alter skill profiles for existing jobs, and change how people work. Therefore, preparing the workforce for an economy defined by these technologies is imperative. This ongoing research focuses on developing an immersive learning training curriculum to prepare the future workforce of the building industry. In this paper we are demonstrating a prototype of a mobile AR application to deliver lessons for training in robotic automation for construction industry workers. The application allows a user to interact with a virtual robot manipulator to learn its basic operations. The goal is to evaluate the effectiveness of the AR application by gauging participants' performance using pre and post surveys. 
    more » « less
  5. Disassembly is an integral part of maintenance, upgrade, and remanufacturing operations to recover end-of-use products. Optimization of disassembly sequences and the capability of robotic technology are crucial for managing the resource-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human-robot collaboration. The proposed model combines three attributes: disassembly cost, disassembleability, and safety, to find the optimal path for dismantling a product and assigning each disassembly operation among humans and robots. The multi-attribute utility function has been employed to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly and is assumed to be an uncertain parameter with a Beta probability density function; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the safety of human workers in the work environment. The optimization model identifies the best disassembly sequence and makes tradeoffs among multi-attributes. An example of a computer desktop illustrates how the proposed model works. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations between human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot. 
    more » « less