skip to main content


Title: Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention
Salinity is a widespread environmental stress that severely limits crop yield worldwide. Cerium oxide nanoparticles (nanoceria) have the unique capability of catalytically reducing levels of stress-induced reactive oxygen species (ROS) including hydroxyl radicals (˙OH) that lack enzymatic scavenging pathways. The underlying mechanisms of how nanoceria ROS scavenging augments plant tolerance to environmental stress are not well understood. Herein, we demonstrate that catalytic ˙OH scavenging by nanoceria in Arabidopsis thaliana leaves significantly improves mesophyll K + retention, a key trait associated with salinity stress tolerance. Leaves with mesophyll cells interfaced with 50 mg L −1 poly(acrylic acid) coated nanoceria (PNC) have significantly higher ( P < 0.05) carbon assimilation rates (85%), quantum efficiency of photosystem II (9%), and chlorophyll content (14%) compared to controls after being exposed to 100 mM NaCl for 3 days. PNC infiltrated leaves (PNC-leaves) under salinity stress exhibit lower ROS levels – including hydroxyl radical (41%) and its precursor hydrogen peroxide (44%) – and one fold higher ( P < 0.05) cytosolic K + dye intensity in leaf mesophyll cells relative to controls. Non-invasive microelectrode ion flux electrophysiological (MIFE) measurements indicated that PNC-leaves have about three-fold lower NaCl-induced K + efflux from leaf mesophyll cells compared to controls upon exposure to salinity stress. The ROS-activated nonselective cation channels (ROS-NSCC) in the plasma membrane of leaf mesophyll cells were identified as the main ˙OH-inducible K + efflux channels. Long term catalytic scavenging of ˙OH in leaves by PNC enhances plant photosynthetic performance under salinity stress by enabling plasma membrane channels/transporters to coordinately retain higher levels of K + in the leaf mesophyll cell cytosol. PNC augmented plant ROS scavenging provides a key tool for understanding and improving plant tolerance against abiotic stresses such as salinity.  more » « less
Award ID(s):
1817363
NSF-PAR ID:
10274633
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Science: Nano
Volume:
5
Issue:
7
ISSN:
2051-8153
Page Range / eLocation ID:
1567 to 1583
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineered nanomaterials interfaced with plant seeds can improve stress tolerance during the vulnerable seedling stage. Herein, we investigated how priming seeds with antioxidant poly(acrylic acid)-coated cerium oxide nanoparticles (PNC) impacts cotton ( Gossypium hirsutum L.) seedling morphological, physiological, biochemical, and transcriptomic traits under salinity stress. Seeds primed with 500 mg L −1 PNC in water (24 h) and germinated under salinity stress (200 mM NaCl) retained nanoparticles in the seed coat inner tegmen, cotyledon, and root apical meristem. Seed priming with PNC significantly ( P < 0.05) increased seedling root length (56%), fresh weight (41%), and dry weight (38%), modified root anatomical structure, and increased root vitality (114%) under salt stress compared with controls (water). PNC seed priming led to a decrease in reactive oxygen species (ROS) accumulation in seedling roots (46%) and alleviated root morphological and physiological changes induced by salinity stress. Roots from exposed seeds exhibited similar Na content, significantly decreased K (6%), greater Ca (22%) and Mg content (60%) compared to controls. A total of 4779 root transcripts were differentially expressed by PNC seed priming alone relative to controls with no nanoparticles under non-saline conditions. Under salinity stress, differentially expressed genes (DEGs) in PNC seed priming treatments relative to non-nanoparticle controls were associated with ROS pathways (13) and ion homeostasis (10), indicating that ROS and conserved Ca 2+ plant signaling pathways likely play pivotal roles in PNC-induced improvement of salinity tolerance. These results provide potential unifying molecular mechanisms of nanoparticle-seed priming enhancement of plant salinity tolerance. 
    more » « less
  2. null (Ed.)
    Abstract Sensing of heat, high light (HL), or mechanical injury by a single leaf of a plant results in the activation of different systemic signals that reach systemic tissues within minutes and trigger systemic acquired acclimation (SAA) or systemic wound responses (SWRs), resulting in a heightened state of stress readiness of the entire plant. Among the different signals associated with rapid systemic responses to stress in plants are electric, calcium, and reactive oxygen species (ROS) waves. These signals propagate from the stressed or injured leaf to the rest of the plant through the plant vascular bundles, and trigger SWRs and SAA in systemic tissues. However, whether they can propagate through other cell types, and whether or not they are interlinked, remain open questions. Here we report that in response to wounding or heat stress (HS), but not HL stress, the ROS wave can propagate through mesophyll cells of Arabidopsis (Arabidopsis thaliana). Moreover, we show that ROS production by mesophyll cells during these stresses is sufficient to restore SWR and SAA transcript accumulation in systemic leaves, as well as SAA to HS (but not HL). We further show that propagation of the ROS wave through mesophyll cells could contribute to systemic signal integration during HL and HS stress combination. Our findings reveal that the ROS wave can propagate through tissues other than the vascular bundles of plants, and that different stresses can trigger different types of systemic signals that propagate through different cell layers and induce stress-specific systemic responses. 
    more » « less
  3. The breakdown of symbiotic mutualism between cnidarian hosts and dinoflagellate algae partners (i.e., bleaching) has been linked to an immune-like response pathway brought on by a nitro-oxidative burst, a symptom of thermal stress. Stress induced by reactive oxygen species (ROS)/reactive nitrogen species is a problem common to aerobic systems. In this study, we tested the antioxidant effects of engineered poly(acrylic acid)-coated cerium dioxide nanoparticles (CeO 2 , nanoceria) on free-living Symbiodiniaceae ( Breviolum minutum ), a dinoflagellate alga that forms symbiotic relationships with reef-building corals and anemones. Results show that poly(acrylic acid)-coated CeO 2 with hydrodynamic diameters of ~4 nm are internalized by B. minutum in under 30 min and subsequently localized in the cytosol. Nanoceria exposure does not inhibit cell growth over time, with the treated cultures showing a similar growth trend over the 25-day exposure. Aerobic activity and thermal stress when held at 34°C for 1 h (+6°C above control) led to increased intracellular ROS concentration with time. A clear ROS scavenging effect of the nanoceria was observed, with a 5-fold decrease in intracellular ROS levels during thermal stress. The nitric oxide (NO) concentration decreased by ~17% with thermal stress, suggesting the rapid involvement of NO scavenging enzymes or proteins within 1 h of stress onset. The presence of nanoceria did not appear to influence NO concentration. Furthermore, aposymbiotic anemones ( Exaiptasia diaphana , ex Aiptasia pallida ) were successfully infected with nanoceria-loaded B. minutum , demonstrating that inoculation could serve as a delivery method. The ability of nanoceria to be taken up by Symbiodiniaceae and reduce ROS production could be leveraged as a potential mitigation strategy to reduce coral bleaching. 
    more » « less
  4. Abstract

    Waterlogging stress (WLS) negatively impacts the growth and yield of crops resulting in heavy losses to agricultural production. Previous studies have revealed that WLS induces a systemic response in shoots that is partially dependent on the plant hormones ethylene and abscisic acid. However, the role of rapid cell-to-cell signaling pathways, such as the reactive oxygen species (ROS) and calcium waves, in systemic responses of plants to WLS is unknown at present. Here, we reveal that an abrupt WLS treatment of Arabidopsis (Arabidopsis thaliana) plants growing in peat moss triggers systemic ROS and calcium wave responses and that the WLS-triggered ROS wave response of Arabidopsis is dependent on the ROS-generating RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), calcium-permeable channels GLUTAMATE-LIKE RECEPTOR 3.3 and 3.6 (GLR3.3 and GLR3.6), and aquaporin PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (PIP2;1) proteins. We further show that WLS is accompanied by a rapid systemic transcriptomic response that is evident as early as 10 min following waterlogging initiation, includes many hypoxia-response transcripts, and is partially dependent on RBOHD. Interestingly, the abrupt WLS of Arabidopsis resulted in the triggering of a rapid hydraulic wave response and the transient opening of stomata on leaves. In addition, it induced in plants a heightened state of tolerance to a subsequent submergence stress. Taken together, our findings reveal that the initiation of WLS in plants is accompanied by rapid systemic physiological and transcriptomic responses that involve the ROS, calcium, and hydraulic waves, as well as the induction of hypoxia acclimation mechanisms in systemic tissues.

     
    more » « less
  5. Abstract

    Developing more stress‐tolerant crops will require greater knowledge of the physiological basis of stress tolerance. Here, we explore how biomass declines in response to salinity relate to leaf traits across 20 genotypes of cultivated sunflower (Helianthus annuus). Plant growth, leaf physiological traits and leaf elemental composition were assessed after 21 days of salinity treatments (0, 50, 100, 150 or 200 mM NaCl) in a greenhouse study. There was a trade‐off in performance such that vigorous genotypes, those with higher biomass at 0 mM NaCl, had both a larger absolute decrease and proportional decrease in biomass due to increased salinity. More vigorous genotypes at control were less tolerant to salinity. Contrary to expectation, genotypes with a low increase in leaf Na and decrease in K:Na were not better at maintaining biomass with increasing salinity. Rather, genotypes with a greater reduction in leaf S and K content were better at maintaining biomass at increased salinity. While we found an overall trade‐off between sunflower vigour and salt tolerance, some genotypes were more tolerant than expected. Further analysis of the traits and mechanisms underlying this trade‐off may allow us to breed these into high‐vigour genotypes in order to increase their salt tolerance.

     
    more » « less