Multimodal mechanophores that react under mechanical force to produce discrete product states with uniquely coupled absorption properties are interesting targets for the design of force-sensing polymers. Herein, we investigate the reactivity of a 2H-bis-naphthopyran mechanophore that generates thermally persistent mono-merocyanine and bis-merocyanine products upon mechanical activation in solution using ultrasonication, distinct from the thermally reversible products generated photochemically. We demonstrate that a force-mediated ester C(O)–O bond scission reaction following ring opening establishes an intramolecular hydrogen bond, locking one merocyanine subunit in the open form. Model compound studies suggest that this locked subunit confers remarkable thermal stability to bis-merocyanine isomers possessing a trans exocyclic alkene on the other subunit, implicating the formation of an unusual trans merocyanine isomer as the product of mechanochemical activation. Density functional theory calculations unexpectedly predict a thermally reversible retro-cyclization reaction of the bis-merocyanine species that could explain the mechanochemical generation of the unusual trans merocyanine isomer.
more »
« less
Experimental and computational electrochemistry of quinazolinespirohexadienone molecular switches – differential electrochromic vs photochromic behavior
Our undergraduate research group has long focused on the preparation and investigation of electron-deficient analogs of the perimidinespirohexadienone (PSHD) family of photochromic molecular switches for potential application as "photochromic photooxidants" for gating sensitivity to photoinduced charge transfer. We previously reported the photochemistry of two closely related and more reducible quinazolinespirohexadienones (QSHDs), wherein the naphthalene of the PSHD is replaced with a quinoline. In the present work, we report our investigation of the electrochemistry of these asymmetric QSHDs. In addition to the short wavelength and photochromic long-wavelength isomers, we have found that a second, distinct long-wavelength isomer is produced electrochemically. This different long-wavelength isomer arises from a difference in the regiochemistry of spirocyclic ring-opening. The structures of both long-wavelength isomers were ascertained by cyclic voltammetry and 1 H NMR analyses, in concert with computational modeling. These results are compared to those for the symmetric parent PSHD, which due to symmetry possesses only a single possible regioisomer upon either electrochemical or photochemical ring-opening. Density functional theory calculations of bond lengths, bond orders, and molecular orbitals allow the rationalization of this differential photochromic vs electrochromic behavior of the QSHDs.
more »
« less
- Award ID(s):
- 1919571
- PAR ID:
- 10274835
- Date Published:
- Journal Name:
- Beilstein Journal of Organic Chemistry
- Volume:
- 15
- ISSN:
- 1860-5397
- Page Range / eLocation ID:
- 2473 to 2485
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The cis- and trans-isomers of a silacycloheptene were selectively synthesized by the alkylation of a silyl dianion, a novel approach to strained cycloalkenes. The trans-silacycloheptene (trans-SiCH) was significantly more strained than the cis isomer, as predicted by quantum chemical calculations and confirmed by crystallographic signatures of a twisted alkene. Each isomer exhibited distinct reactivity toward ring-opening metathesis polymerization (ROMP), where only trans-SiCH afforded high-molar-mass polymer under enthalpy-driven ROMP. Hypothesizing that the introduction of silicon might result in increased molecular compliance at large extensions, we compared poly(trans-SiCH) to organic polymers by single-molecule force spectroscopy (SMFS). Force-extension curves from SMFS showed that poly(trans-SiCH) is more easily overstretched than two carbon-based analogues, polycyclooctene and polybutadiene, with stretching constants that agree well with the results of computational simulations.more » « less
-
The spectroscopic identification of Bi 4 has been very elusive. Two constitutional Bi 4 isomers of T d and C 2v symmetry are investigated and each is found to be a local energetic minimum. The optimized geometries and vibrational frequencies of these two isomers are obtained at the CCSD(T)/cc-pVQZ-PP level of theory, utilizing the Stoll, Metz, and Dolg 60-electron effective core potential. The fundamental frequencies of the T d isomer are obtained at the same level of theory. The focal point analysis method, from a maximum basis set of cc-pV5Z-PP, and proceeding to a maximum correlation method of CCSDTQ, was employed to determine the dissociation energy of Bi 4 ( T d ) into two Bi 2 and the adiabatic energy difference between the C 2v and T d isomers of Bi 4 . These quantities are predicted to be +65 kcal mol −1 and +39 kcal mol −1 , respectively. Two electron vertical excitation energies between the T d and C 2v electronic configurations are computed to be 156 kcal mol −1 for the T d isomer and 9 kcal mol −1 for the C 2v isomer. The most probable approach to laboratory spectroscopic identification of Bi 4 is via an infrared spectrum. The predicted fundamentals (cm −1 ) with harmonic IR intensities in parentheses (km mol −1 ) are 94(0), 123(0.23), and 167(0) for the T d isomer. The moderate IR intensity for the only allowed fundamental may explain why Bi 4 has yet to be observed. Through natural bond orbital analysis, the C 2v isomer of Bi 4 was discovered to exhibit “long-bonding” between the furthest apart ‘wing’ atoms. This long-bonding is postulated to be facilitated by the σ-bonding orbital between the ‘spine’ atoms of the C 2v isomer.more » « less
-
null (Ed.)One of the fundamental goals of chemistry is to determine how molecular structure influences interactions and leads to different reaction products. Studies of isomer-selected and resolved chemical reactions can shed light directly on how form leads to function. In the following, we present the results of gas-phase reactions between acetylene cations (C 2 D 2 + ) with two different isomers of C 3 H 4 : propyne (DC 3 D 3 ) and allene (H 2 C 3 H 2 ). Our highly controlled, trapped-ion environment allows for precise determination of reaction products and kinetics. From these results, we can infer details of the underlying reaction dynamics of C 2 H 2 + + C 3 H 4 . Through the synergy of experimental results and high-level quantum chemical potential energy surface calculations, we are able to identify distinct reaction mechanisms for the two isomers. We find long-range charge exchange with no complex formation is favored for allene, whereas charge exchange leads to an intermediate reaction complex for propyne and thus, different products. Therefore, this reaction displays a pronounced isomer-selective bi-molecular reactive process.more » « less
-
Chirik, Paul (Ed.)The design of a rigidified macrocyclic N-heterocyclic carbene (NHC) ligand led to the formation and structural characterization of in- and out-Ru carbene complexes. In this study, introduction of a conformational lock was used to rigidify heteroaryl-aryl bonds and thereby enforce a more perpendicular dihedral angle. A forcing metalation step was needed to form the isomeric Ru carbene complexes (Grubbs complexes). The major isomer had the Ru carbene fragment located outside the macrocyclic ring whereas the minor isomer had the Ru carbene inside the macrocyclic ring. The two new Ru carbene complexes are the first examples of in- and out-isomers of a Grubbs-type complex. The solid state structures of each isomeric ruthenium carbene complex was determined by x-ray diffraction studies. The two Ru complexes showed significantly different catalytic reactivity in the ring-closing metathesis (RCM) of the benchmark substrate, diethyl diallylmalonate. We performed computational studies to determine rotational barriers; scalable energetic barriers were found in the unmetallated NHC ligand, favoring the in-isomer by 2.4 kcal/mol. These calculations, coupled with attempted interconversion of isomers, support a mechanism featuring rotational isomerization of the NHC nucleophile in a preequilibrium step before metalation.more » « less
An official website of the United States government

