skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sea-Level Rise and the Persistence of Tree Islands in Coastal Landscapes
Naturally formed forest patches known as tree islands are found within lower-statured wetland matrices throughout the world, where they contrast sharply with the surrounding vegetation. In some coastal wetlands they are embedded in former freshwater marshes that are currently exposed to saltwater intrusion and mangrove encroachment associated with accelerating sea-level rise. In this study we resurveyed tree composition and determined environmental conditions in tree islands of the coastal Florida Everglades that had been examined two decades earlier. We asked whether tree islands in this coastal transition zone were differentiated geomorphologically as well as compositionally, and whether favorable geomorphology enabled coastal forest type(s) to maintain their compositional integrity against rising seas. Patterns of variation in geomorphology and soils among forest types were evident, but were dwarfed by differences between forest and adjacent wetlands. Tree island surfaces were elevated by 12–44 cm, and 210Pb analyses indicated that their current rates of vertical accretion were more rapid than those of surrounding ecosystems. Tree island soils were deeper and more phosphorus-rich than in the adjoining matrix. Salinity decreased interiorward in both tree island and marsh, but porewater was fresher in forest than marsh in Mixed Swamp Forest, midway along the coastal gradient where tropical hardwoods were most abundant. Little decrease in the abundance of tropical hardwood species nor increase in halophytes was observed during the study period. Our data suggest that geomorphological differences between organic tree island and marl marsh, perhaps driven by groundwater upwelling through more transmissive tree island soils, contributed to the forests’ compositional stability, though this stasis may be short-lived despite management efforts.  more » « less
Award ID(s):
2025954
PAR ID:
10274953
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Ecosystems
ISSN:
1432-9840
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Barrier islands are highly dynamic coastal landforms that are economically, ecologically, and societally important. Woody vegetation located within barrier island interiors can alter patterns of overwash, leading to periods of periodic‐barrier island retreat. Due to the interplay between island interior vegetation and patterns of barrier island migration, it is critical to better understand the factors controlling the presence of woody vegetation on barrier islands. To provide new insight into this topic, we use remote sensing data collected by LiDAR, LANDSAT, and aerial photography to measure shrub presence, coastal dune metrics, and island characteristics (e.g., beach width, island width) for an undeveloped mixed‐energy barrier island system in Virginia along the US mid‐Atlantic coast. We apply decision tree and random forest machine learning methods to identify new empirical relationships between island geomorphology and shrub presence. We find that shrubs are highly likely (90% likelihood) to be present in areas where dune elevations are above ∼1.9 m and island interior widths are greater than ∼160 m and that shrubs are unlikely (10% likelihood) to be present in areas where island interior widths are less than ∼160 m regardless of dune elevation. Our machine learning predictions are 90% accurate for the Virginia Barrier Islands, with almost half of our incorrect predictions (5% of total transects) being attributable to system hysteresis; shrubs require time to adapt to changing conditions and therefore their growth and removal lags changes in island geomorphology, which can occur more rapidly. 
    more » « less
  2. Abstract As sea‐level rise converts coastal forest to salt marsh, marsh arthropods may migrate inland; however, the resulting changes in arthropod communities, including the stage of forest retreat that first supports saltmarsh species, remain unknown. Furthermore, the ghost forest that forms in the wake of rapid forest retreat offers an unknown quality of habitat to marsh arthropods. In a migrating marsh in Virginia, USA, ground‐dwelling arthropod communities were assessed across the forest‐to‐marsh gradient, and functional use of ghost forest and high marsh habitats was evaluated to determine whether marsh arthropods utilized expanded marsh in the same way as existing marsh. Diet and body condition were compared for two marsh species found in both high marsh and ghost forest (the detritivore amphipod,Orchestia grillus, and the hunting spider,Pardosa littoralis). Community composition differed among zones along the gradient, driven largely by retreating forest taxa (e.g., Collembola), marsh taxa migrating into the forest (e.g.,O. grillus), and unique taxa (e.g., Hydrophilinae beetles) at the ecotone. The low forest was the most inland zone to accommodate the saltmarsh speciesO. grillus, suggesting that inland migration of certain saltmarsh arthropods may co‐occur with early saltmarsh plant migration and precede complete tree canopy die‐off. Functionally,O. grillusoccupied a larger trophic niche in the ghost forest than the high marsh, likely by consuming both marsh and terrestrial material. Despite this, both observed marsh species primarily consumed from the marsh grass food web in both habitats, and no lasting differences in body condition were observed. For the species and functional traits assessed, the ghost forest and high marsh did not show major differences at this site. Forest retreat and marsh migration may thus provide an important opportunity for generalist saltmarsh arthropods to maintain their habitat extent in the face of marsh loss due to sea‐level rise. 
    more » « less
  3. null (Ed.)
    Maritime forests are threatened by sea-level rise, storm surge and encroachment of salt-tolerant species. On barrier islands, these forested communities must withstand the full force of tropical storms, hurricanes and nor’easters while the impact is reduced for mainland forests protected by barrier islands. Geographic position may account for differences in maritime forest resilience to disturbance. In this study, we quantify two geographically distinct maritime forests protected by dunes on Virginia’s Eastern Shore (i.e., mainland and barrier island) at two time points (15 and 21 years apart, respectively) to determine whether the trajectory is successional or presenting evidence of disassembly with sea-level rise and storm exposure. We hypothesize that due to position on the landscape, forest disassembly will be higher on the barrier island than mainland as evidenced by reduction in tree basal area and decreased species richness. Rate of relative sea-level rise in the region was 5.9 ± 0.7 mm yr−1 based on monthly mean sea-level data from 1975 to 2017. Savage Neck Dunes Natural Area Preserve maritime forest was surveyed using the point quarter method in 2003 and 2018. Parramore Island maritime forest was surveyed in 1997 using 32 m diameter circular plots. As the island has been eroding over the past two decades, 2016 Landsat imagery was used to identify remaining forested plots prior to resurveying. In 2018, only plots that remained forested were resurveyed. Lidar was used to quantify elevation of each point/plot surveyed in 2018. Plot elevation at Savage Neck was 1.93 ± 0.02 m above sea level, whereas at Parramore Island, elevation was lower at 1.04 ± 0.08 m. Mainland dominant species, Acer rubrum, Pinus taeda, and Liquidambar styraciflua, remained dominant over the study period, with a 14% reduction in the total number of individuals recorded. Basal area increased by 11%. Conversely, on Parramore Island, 33% of the former forested plots converted to grassland and 33% were lost to erosion and occur as ghost forest on the shore or were lost to the ocean. Of the remaining forested plots surveyed in 2018, dominance switched from Persea palustris and Juniperus virginiana to the shrub Morella cerifera. Only 46% of trees/shrubs remained and basal area was reduced by 84%. Shrub basal area accounted for 66% of the total recorded in 2018. There are alternative paths to maritime forest trajectory which differ for barrier island and mainland. Geographic position relative to disturbance and elevation likely explain the changes in forest community composition over the timeframes studied. Protected mainland forest at Savage Neck occurs at higher mean elevation and indicates natural succession to larger and fewer individuals, with little change in mixed hardwood-pine dominance. The fronting barrier island maritime forest on Parramore Island has undergone rapid change in 21 years, with complete loss of forested communities to ocean or conversion to mesic grassland. Of the forests remaining, dominant evergreen trees are now being replaced with the expanding evergreen shrub, Morella cerifera. Loss of biomass and basal area has been documented in other low elevation coastal forests. Our results indicate that an intermediate shrub state may precede complete loss of woody communities in some coastal communities, providing an alternative mechanism of resilience. 
    more » « less
  4. The capacity of coastal wetlands to stabilize shorelines and reduce erosion is a critical ecosystem service, and it is uncertain how changes in dominant vegetation may affect coastal protection. As part of a long-term study (2012–present) comparing ecosystem functions of marsh and black mangrove vegetation, we have experimentally maintained marsh and black mangrove patches (3 m × 3 m) along a plot-level (24 m × 42 m) gradient of marsh and mangrove cover in coastal wetlands near Port Aransas, TX. In August 2017, this experiment was directly in the path of Hurricane Harvey, a category 4 storm. This extreme disturbance event provided an opportunity to quantify differences in resistance between mangrove and marsh vegetation and to assess which vegetation type provided better shoreline protection against storm-driven erosion. We compared changes in plant cover, shoreline erosion, and accreted soil depth to values measured prior to storm landfall. Relative mangrove cover decreased 25–40% after the storm, regardless of initial cover, largely due to damage on taller mangroves (> 2.5 m height) that were not fully inundated by storm surge and were therefore exposed to strong winds. Evidence of regrowth on damaged mangrove branches was apparent within 2 months of landfall. Hurricane-induced decreases in mangrove cover were partially ameliorated by the presence of neighboring mangroves, particularly closer to the shoreline. Marsh plants were generally resistant to hurricane effects. Shoreline erosion exceeded 5 m where mangroves were absent (100% marsh cover) but was relatively modest (< 0.5 m) in plots with mangroves present (11–100% mangrove cover). Storm-driven accreted soil depth was variable but more than 2× higher in marsh patches than in mangrove patches. In general, mangroves provided shoreline protection from erosion but were also more damaged by wind and surge, which may reduce their shoreline protection capacity over longer time scales. 
    more » « less
  5. The capacity of coastal wetlands to stabilize shorelines and reduce erosion is a critical ecosystem service, and it is uncertain how changes in dominant vegetation may affect coastal protection. As part of a long-term study (2012–present) comparing ecosystem functions of marsh and black mangrove vegetation, we have experimentally maintained marsh and black mangrove patches (3 m × 3 m) along a plot-level (24 m × 42 m) gradient of marsh and mangrove cover in coastal wetlands near Port Aransas, TX. In August 2017, this experiment was directly in the path of Hurricane Harvey, a category 4 storm. This extreme disturbance event provided an opportunity to quantify differences in resistance between mangrove and marsh vegetation and to assess which vegetation type provided better shoreline protection against storm-driven erosion. We compared changes in plant cover, shoreline erosion, and accreted soil depth to values measured prior to storm landfall. Relative mangrove cover decreased 25–40% after the storm, regardless of initial cover, largely due to damage on taller mangroves (> 2.5 m height) that were not fully inundated by storm surge and were therefore exposed to strong winds. Evidence of regrowth on damaged mangrove branches was apparent within 2 months of landfall. Hurricane-induced decreases in mangrove cover were partially ameliorated by the presence of neighboring mangroves, particularly closer to the shoreline. Marsh plants were generally resistant to hurricane effects. Shoreline erosion exceeded 5 m where mangroves were absent (100% marsh cover) but was relatively modest (< 0.5 m) in plots with mangroves present (11–100% mangrove cover). Storm-driven accreted soil depth was variable but more than 2× higher in marsh patches than in mangrove patches. In general, mangroves provided shoreline protection from erosion but were also more damaged by wind and surge, which may reduce their shoreline protection capacity over longer time scales. 
    more » « less