skip to main content

Title: Long-Term Community Dynamics Reveal Different Trajectories for Two Mid-Atlantic Maritime Forests
Maritime forests are threatened by sea-level rise, storm surge and encroachment of salt-tolerant species. On barrier islands, these forested communities must withstand the full force of tropical storms, hurricanes and nor’easters while the impact is reduced for mainland forests protected by barrier islands. Geographic position may account for differences in maritime forest resilience to disturbance. In this study, we quantify two geographically distinct maritime forests protected by dunes on Virginia’s Eastern Shore (i.e., mainland and barrier island) at two time points (15 and 21 years apart, respectively) to determine whether the trajectory is successional or presenting evidence of disassembly with sea-level rise and storm exposure. We hypothesize that due to position on the landscape, forest disassembly will be higher on the barrier island than mainland as evidenced by reduction in tree basal area and decreased species richness. Rate of relative sea-level rise in the region was 5.9 ± 0.7 mm yr−1 based on monthly mean sea-level data from 1975 to 2017. Savage Neck Dunes Natural Area Preserve maritime forest was surveyed using the point quarter method in 2003 and 2018. Parramore Island maritime forest was surveyed in 1997 using 32 m diameter circular plots. As the island has been eroding more » over the past two decades, 2016 Landsat imagery was used to identify remaining forested plots prior to resurveying. In 2018, only plots that remained forested were resurveyed. Lidar was used to quantify elevation of each point/plot surveyed in 2018. Plot elevation at Savage Neck was 1.93 ± 0.02 m above sea level, whereas at Parramore Island, elevation was lower at 1.04 ± 0.08 m. Mainland dominant species, Acer rubrum, Pinus taeda, and Liquidambar styraciflua, remained dominant over the study period, with a 14% reduction in the total number of individuals recorded. Basal area increased by 11%. Conversely, on Parramore Island, 33% of the former forested plots converted to grassland and 33% were lost to erosion and occur as ghost forest on the shore or were lost to the ocean. Of the remaining forested plots surveyed in 2018, dominance switched from Persea palustris and Juniperus virginiana to the shrub Morella cerifera. Only 46% of trees/shrubs remained and basal area was reduced by 84%. Shrub basal area accounted for 66% of the total recorded in 2018. There are alternative paths to maritime forest trajectory which differ for barrier island and mainland. Geographic position relative to disturbance and elevation likely explain the changes in forest community composition over the timeframes studied. Protected mainland forest at Savage Neck occurs at higher mean elevation and indicates natural succession to larger and fewer individuals, with little change in mixed hardwood-pine dominance. The fronting barrier island maritime forest on Parramore Island has undergone rapid change in 21 years, with complete loss of forested communities to ocean or conversion to mesic grassland. Of the forests remaining, dominant evergreen trees are now being replaced with the expanding evergreen shrub, Morella cerifera. Loss of biomass and basal area has been documented in other low elevation coastal forests. Our results indicate that an intermediate shrub state may precede complete loss of woody communities in some coastal communities, providing an alternative mechanism of resilience. « less
Authors:
; ;
Award ID(s):
1832221
Publication Date:
NSF-PAR ID:
10293995
Journal Name:
Forests
Volume:
12
Issue:
8
Page Range or eLocation-ID:
1063
ISSN:
1999-4907
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal forested wetlands support many endemic species, sequester substantial carbon stocks, and have been reduced in extent due to historic drainage and agricultural expansion. Many of these unique coastal ecosystems have been drained, while those that remain are now threatened by saltwater intrusion and sea level rise in hydrologically modified coastal landscapes. Several recent studies have documented rapid and accelerating losses of coastal forested wetlands in small areas of the Atlantic and Gulf coasts of North America, but the full extent of loss across North America’s Coastal Plain (NACP) has not been quantified. We used classified satellite imagery to document a net loss of  13,682 km2 (8%) of forested coastal wetlands across the NACP between 1996 and 2016. Most forests transitioned to scrub-shrub (53%) and marsh habitats (24%). Even within protected areas, we measured substantial rates of wetland deforestation and significant fragmentation of forested wetland habitats. Variation in the rate of sea level rise, the number of tropical storm landings, and the average elevation of coastal watersheds explained about 78% of the variation in coastal wetland deforestation extent along the south Atlantic and Gulf Coasts. The rate of coastal forest loss within the NACP (684 km2/y) exceeds the recentmore »estimate of global losses of coastal mangroves (210 km2/y). At the current rate of deforestation, in the absence of widespread protection or restoration efforts, coastal forested wetlands may not persist into the next century.« less
  2. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  3. Abstract
    This data was primarily collected to assess forest quality within the Minneapolis-St. Paul (MSP) Metropolitan Area and to link above-ground and below-ground properties as part of the goals of the MSP-LTER Urban Tree Canopy research group. Here, we sampled vegetation on 40 circular plots with a 12.5 m radius distributed across 13 parks, registering the date of sampling, park and management agency names, the plot number, and geolocation (latitude, longitude, and elevation). The plots were randomly selected based on GEDI (Global Ecosystem Dynamics Investigation instrument) 2021 footprints in the MSP Metropolitan Area along accessible forested areas inside public parks, where the management agency allowed sampling. In each plot, we measured forest structure and diversity metrics, species names and abundance, DBH, height, distance from the plot center, the height where each individual canopy starts, and the relative position, exposure, and density of each canopy. We also measured understory plant structure and diversity in 4 subplots per plot, totaling 160 subplots. In these subplots, we surveyed all individual plants with heights over 20 cm, recording species names and abundance, plant basal diameter, plant height, and the total number of branches. Furthermore, we assessed the canopy openness above each subplot by calculatingMore>>
  4. Research Highlights: We demonstrate a macroscale framework combining an invasibility model with forest inventory data, and evaluate regional forest exposure to harmful invasive plants under different types of forest protection. Background and Objectives: Protected areas are a fundamental component of natural resource conservation. The exposure of protected forests to invasive plants can impede achievement of conservation goals, and the effectiveness of protection for limiting forest invasions is uncertain. We conducted a macroscale assessment of the exposure of protected and unprotected forests to harmful invasive plants in the eastern United States. Materials and Methods: Invasibility (the probability that a forest site has been invaded) was estimated for 82,506 inventory plots from site and landscape attributes. The invaded forest area was estimated by using the inventory sample design to scale up plot invasibility estimates to all forest area. We compared the invasibility and the invaded forest area of seven categories of protection with that of de facto protected (publicly owned) forest and unprotected forest in 13 ecological provinces. Results: We estimate approximately 51% of the total forest area has been exposed to harmful invasive plants, including 30% of the protected forest, 38% of the de facto protected forest, and 56% of themore »unprotected forest. Based on cumulative invasibility, the relative exposure of protection categories depended on the assumed invasibility threshold. Based on the invaded forest area, the five least-exposed protection categories were wilderness area (13% invaded), national park (18%), sustainable use (26%), nature reserve (31%), and de facto protected Federal land (36%). Of the total uninvaded forest area, only 15% was protected and 14% had de facto protection. Conclusions: Any protection is better than none, and public ownership alone is as effective as some types of formal protection. Since most of the remaining uninvaded forest area is unprotected, landscape-level management strategies will provide the most opportunities to conserve it.« less
  5. Abstract

    Epikarst estuary response to hydroclimate change remains poorly understood, despite the well-studied link between climate and karst groundwater aquifers. The influence of sea-level rise and coastal geomorphic change on these estuaries obscures climate signals, thus requiring careful development of paleoenvironmental histories to interpret the paleoclimate archives. We used foraminifera assemblages, carbon stable isotope ratios (δ13C) and carbon:nitrogen (C:N) mass ratios of organic matter in sediment cores to infer environmental changes over the past 5300 years in Celestun Lagoon, Yucatan, Mexico. Specimens (> 125 µm) from modern core top sediments revealed three assemblages: (1) a brackish mangrove assemblage of agglutinatedMiliamminaandAmmotiumtaxa and hyalineHaynesina(2) an inner-shelf marine assemblage ofBolivina,Hanzawaia, andRosalina,and (3) a brackish assemblage dominated byAmmoniaandElphidium. Assemblages changed along the lagoon channel in response to changes in salinity and vegetation, i.e. seagrass and mangrove. In addition to these three foraminifera assemblages, lagoon sediments deposited since 5300 cal yr BP are comprised of two more assemblages, defined byArchaiasandLaevipeneroplis,which indicate marineThalassiaseagrasses, andTrichohyalus,which indicates restricted inland mangrove ponds. Our data suggest that Celestun Lagoon displayed four phases of development: (1) an inland mangrove pond (5300 BP) (2) a shallow unprotected coastline with marine seagrass and barrier island initiation (4900 BP) (3) a protected brackish lagoon (3000 BP), and (4) amore »protected lagoon surrounded by mangroves (1700 BP). Stratigraphic (temporal) changes in core assemblages resemble spatial differences in communities across the modern lagoon, from the southern marine sector to the northern brackish region. Similar temporal patterns have been reported from other Yucatan Peninsula lagoons and fromcenotes(Nichupte, Aktun Ha), suggesting a regional coastal response to sea level rise and climate change, including geomorphic controls (longshore drift) on lagoon salinity, as observed today. Holocene barrier island development progressively protected the northwest Yucatan Peninsula coastline, reducing mixing between seawater and rain-fed submarine groundwater discharge. Superimposed on this geomorphic signal, assemblage changes that are observed reflect the most severe regional wet and dry climate episodes, which coincide with paleoclimate records from lowland lake archives (Chichancanab, Salpeten). Our results emphasize the need to consider coastal geomorphic evolution when using epikarst estuary and lagoon sediment archives for paleoclimate reconstruction and provide evidence of hydroclimate changes on the Yucatan Peninsula.

    « less