skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FluxSat: Measuring the Ocean–Atmosphere Turbulent Exchange of Heat and Moisture from Space
Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.  more » « less
Award ID(s):
1936222
PAR ID:
10275060
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
11
ISSN:
2072-4292
Page Range / eLocation ID:
1796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two decades of high-resolution satellite observations and climate modeling studies have indicated strong ocean–atmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The air–sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale air–sea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean mesoscale processes are active. Current theories, informed by rapidly advancing observational and modeling capabilities, have established the importance of mesoscale and frontal-scale air–sea interaction processes for understanding large-scale ocean circulation, biogeochemistry, and weather and climate variability. However, numerous challenges remain to accurately diagnose, observe, and simulate mesoscale air–sea interaction to quantify its impacts on large-scale processes. This article provides a comprehensive review of key aspects pertinent to mesoscale air–sea interaction, synthesizes current understanding with remaining gaps and uncertainties, and provides recommendations on theoretical, observational, and modeling strategies for future air–sea interaction research. Significance StatementRecent high-resolution satellite observations and climate models have shown a significant impact of coupled ocean–atmosphere interactions mediated by small-scale (mesoscale) ocean processes, including ocean eddies and fronts, on Earth’s climate. Ocean mesoscale-induced spatial temperature and current variability modulate the air–sea exchanges in heat, momentum, and mass (e.g., gases such as water vapor and carbon dioxide), altering coupled boundary layer processes. Studies suggest that skillful simulations and predictions of ocean circulation, biogeochemistry, and weather events and climate variability depend on accurate representation of the eddy-mediated air–sea interaction. However, numerous challenges remain in accurately diagnosing, observing, and simulating mesoscale air–sea interaction to quantify its large-scale impacts. This article synthesizes the latest understanding of mesoscale air–sea interaction, identifies remaining gaps and uncertainties, and provides recommendations on strategies for future ocean–weather–climate research. 
    more » « less
  2. Abstract We analyze the role of mesoscale heat advection in a mixed layer (ML) heat budget, using a regional high-resolution coupled model with realistic atmospheric forcing and an idealized ocean component. The model represents two regions in the Southern Ocean, one with strong ocean currents and the other with weak ocean currents. We conclude that heat advection by oceanic currents creates mesoscale anomalies in sea surface temperature (SST), while the atmospheric turbulent heat fluxes dampen these SST anomalies. This relationship depends on the spatial scale, the strength of the currents, and the mixed layer depth (MLD). At the oceanic mesoscale, there is a positive correlation between the advection and SST anomalies, especially when the currents are strong overall. For large-scale zonal anomalies, the ML-integrated advection determines the heating/cooling of the ML, while the SST anomalies tend to be larger in size than the advection and the spatial correlation between these two fields is weak. The effects of atmospheric forcing on the ocean are modulated by the MLD variability. The significance of Ekman advection and diabatic heating is secondary to geostrophic advection except in summer when the MLD is shallow. This study links heat advection, SST anomalies, and air–sea heat fluxes at ocean mesoscales, and emphasizes the overall dominance of intrinsic oceanic variability in mesoscale air–sea heat exchange in the Southern Ocean. 
    more » « less
  3. Abstract There is great interest in improving our understanding of the respective roles of the ocean and atmosphere in variability and change in weather and climate. Due to the sparsity of sustained observing sites in the open ocean, information about the air–sea exchanges of heat, freshwater, and momentum is often drawn from models. In this paper observations from three long-term surface moorings deployed in the trade wind regions of the Pacific and Atlantic Oceans are used to compare observed means and low-passed air–sea fluxes from the moorings with coincident records from three atmospheric reanalyses (ERA5, NCEP-2, and MERRA-2) and from CMIP6 coupled models. To set the stage for the comparison, the methodologies of maintaining the long-term surface moorings, known as ocean reference stations (ORS), and assessing the accuracies of their air–sea fluxes are described first. Biases in the reanalyses’ means and low-passed wind stresses and net air–sea heat fluxes are significantly larger than the observational uncertainties and in some case show variability in time. These reanalyses and most CMIP6 models fail to provide as much heat into the ocean as observed. In the discussion and conclusions section, long-term observing sites in the open ocean are seen as essential, independent benchmarks not only to document the coupling between the atmosphere and ocean but also to promote collaborative efforts to assess and improve the ability of models to simulate air–sea fluxes. 
    more » « less
  4. Abstract High latitudes, including the Bering Sea, are experiencing unprecedented rates of change. Long-term Bering Sea warming trends have been identified, and marine heatwaves (MHWs), event-scale elevated sea surface temperature (SST) extremes, have also increased in frequency and longevity in recent years. Recent work has shown that variability in air–sea coupling plays a dominant role in driving Bering Sea upper-ocean thermal variability and that surface forcing has driven an increase in the occurrence of positive ocean temperature anomalies since 2010. In this work, we characterize the drivers of the anomalous surface air–sea heat fluxes in the Bering Sea over the period 2010–22 using ERA5 fields. We show that the surface turbulent heat flux dominates the net surface heat flux variability from September to April and is primarily a result of near-surface air temperature and specific humidity anomalies. The airmass anomalies that account for the majority of the turbulent heat flux variability are a function of wind direction, with southerly (northerly) wind advecting anomalously warm (cool), moist (dry) air over the Bering Sea, resulting in positive (negative) surface turbulent flux anomalies. During the remaining months of the year, anomalies in the surface radiative fluxes account for the majority of the net surface heat flux variability and are a result of anomalous cloud coverage, anomalous lower-tropospheric virtual temperature, and sea ice coverage variability. Our results indicate that atmospheric variability drives much of the Bering Sea upper-ocean temperature variability through the mediation of the surface heat fluxes during the analysis period. Significance StatementA long-term ocean warming trend and a recent increase in marine heatwaves in the Bering Sea have been identified. Previous work showed that anomalies in the exchange of heat between the ocean and the atmosphere were the primary driver of Bering Sea temperature variability, but the processes responsible for the heat exchange anomalies were unknown. In this work, we show that the atmosphere is the primary driver of anomalies in the Bering Sea air–sea heat exchange and therefore plays an important role in altering the thermal state of the Bering Sea. Our results highlight the importance of understanding more about how the ocean and the atmosphere interact at high latitudes and how this relationship will be affected by future climate change. 
    more » « less
  5. Abstract Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean–atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m−2day−1, averaged over the sampling period. The CO2transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean–atmosphere fluxes. The ocean–atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean–atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere. 
    more » « less