skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning-based Support Estimation in Sublinear Time
We consider the problem of estimating the number of distinct elements in a large data set (or, equivalently, the support size of the distribution induced by the data set) from a random sample of its elements. The problem occurs in many applications, including biology, genomics, computer systems and linguistics. A line of research spanning the last decade resulted in algorithms that estimate the support up to ±εn from a sample of size O(log2(1/ε)·n/logn), where n is the data set size. Unfortunately, this bound is known to be tight, limiting further improvements to the complexity of this problem. In this paper we consider estimation algorithms augmented with a machine-learning-based predictor that, given any element, returns an estimation of its frequency. We show that if the predictor is correct up to a constant approximation factor, then the sample complexity can be reduced significantly, to log(1/ε)·n1−Θ(1/log(1/ε)).We evaluate the proposed algorithms on a collection of data sets, using the neural-network based estimators from Hsu et al, ICLR’19 as predictors. Our experiments demonstrate substantial (up to 3x) improvements in the estimation accuracy com-pared to the state of the art algorithm.  more » « less
Award ID(s):
2006664 2022448 1740751
PAR ID:
10275616
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a family of sets (S1, S2,... SM) over a universe Ω, estimating the size of their union in the data streaming model is a fundamental computational problem with a wide variety of applications. The holy grail in the field of streaming is to seek design of algorithms that achieve (ε, δ)-approximation with poly(log |Ω|, ε-1, log δ-1) space and update time complexity. Earlier investigations achieve algorithms with desired space and update time complexity for restricted cases such as singletons (Distinct Elements problem), one-dimensional ranges, arithmetic progressions, and sub-cubes. However, techniques used in these works fail for many other simple structured sets. A prominent example is that of Klee's Measure Problem (KMP), wherein every set Si is represented by an axis-parallel rectangle in d-dimensional spaces. Despite extensive prior work, the best-known streaming algorithms for many of these cases depend on the size of the stream, and therefore the problem of whether there exists a streaming algorithm for estimations of size of the union of sets with poly(log |Ω|, ε-1, log δ-1) space and update time complexity has remained open. In this work, we focus on certain general families of sets called Delphic families (which allows efficient membership, sampling, and cardinality queries). Such families of sets capture several well-known problems, including KMP, test coverage, and hypervolume estimation. The primary contribution of our work is to resolve the above-mentioned open problem for streams over Delphic families. In particular, we design the first streaming algorithm for estimating |⋃i=1M Si| with poly(log |Ω|, ε-1, log δ-1) space and update time complexity (independent of M, the length of the stream) when each Si is a member from a Delphic family of sets. We further generalize our results to larger families of sets, called approximate-Delphic families, for which the size of a set can be known approximately but not exactly. Our results resolve two of the open problems listed in Meel, Vinodchandran, Chakraborty (PODS-21). 
    more » « less
  2. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    Estimating the size of the union of a stream of sets S₁, S₂, …, S_M where each set is a subset of a known universe Ω is a fundamental problem in data streaming. This problem naturally generalizes the well-studied 𝖥₀ estimation problem in the streaming literature, where each set contains a single element from the universe. We consider the general case when the sets S_i can be succinctly represented and allow efficient membership, cardinality, and sampling queries (called a Delphic family of sets). A notable example in this framework is the Klee’s Measure Problem (KMP), where every set S_i is an axis-parallel rectangle in d-dimensional spaces (Ω = [Δ]^d where [Δ] := {1, … ,Δ} and Δ ∈ ℕ). Recently, Meel, Chakraborty, and Vinodchandran (PODS-21, PODS-22) designed a streaming algorithm for (ε,δ)-estimation of the size of the union of set streams over Delphic family with space and update time complexity O((log³|Ω|)/ε² ⋅ log 1/δ) and Õ((log⁴|Ω|)/ε² ⋅ log 1/(δ)), respectively. This work presents a new, sampling-based algorithm for estimating the size of the union of Delphic sets that has space and update time complexity Õ((log²|Ω|)/ε² ⋅ log 1/(δ)). This improves the space complexity bound by a log|Ω| factor and update time complexity bound by a log² |Ω| factor. A critical question is whether quadratic dependence of log|Ω| on space and update time complexities is necessary. Specifically, can we design a streaming algorithm for estimating the size of the union of sets over Delphic family with space and complexity linear in log|Ω| and update time poly(log|Ω|)? While this appears technically challenging, we show that establishing a lower bound of ω(log|Ω|) with poly(log|Ω|) update time is beyond the reach of current techniques. Specifically, we show that under certain hard-to-prove computational complexity hypothesis, there is a streaming algorithm for the problem with optimal space complexity O(log|Ω|) and update time poly(log(|Ω|)). Thus, establishing a space lower bound of ω(log|Ω|) will lead to break-through complexity class separation results. 
    more » « less
  3. Barman, Siddharth; Lasota, Sławomir (Ed.)
    We consider the problem of estimating the size of a maximum matching in low-arboricity graphs in the dynamic graph stream model. In this setting, an algorithm with limited memory makes multiple passes over a stream of edge insertions and deletions, resulting in a low-arboricity graph. Let n be the number of vertices of the input graph, and α be its arboricity. We give the following results. 1) As our main result, we give a three-pass streaming algorithm that produces an (α + 2)(1 + ε)-approximation and uses space O(ε^{-2}⋅α²⋅n^{1/2}⋅log n). This result should be contrasted with the Ω(α^{-5/2}⋅n^{1/2}) space lower bound established by [Assadi et al., SODA'17] for one-pass algorithms, showing that, for graphs of constant arboricity, the one-pass space lower bound can be achieved in three passes (up to poly-logarithmic factors). Furthermore, we obtain a two-pass algorithm that uses space O(ε^{-2}⋅α²⋅n^{3/5}⋅log n). 2) We also give a (1+ε)-approximation multi-pass algorithm, where the space used is parameterized by an upper bound on the size of a largest matching. For example, using O(log log n) passes, the space required is O(ε^{-1}⋅α²⋅k⋅log n), where k denotes an upper bound on the size of a largest matching. Finally, we define a notion of arboricity in the context of matrices. This is a natural measure of the sparsity of a matrix that is more nuanced than simply bounding the total number of nonzero entries, but less restrictive than bounding the number of nonzero entries in each row and column. For such matrices, we exploit our results on estimating matching size to present upper bounds for the problem of rank estimation in the dynamic data stream model. 
    more » « less
  4. In this paper, we study streaming algorithms that minimize the number of changes made to their internal state (i.e., memory contents). While the design of streaming algorithms typically focuses on minimizing space and update time, these metrics fail to capture the asymmetric costs, inherent in modern hardware and database systems, of reading versus writing to memory. In fact, most streaming algorithms write to their memory on every update, which is undesirable when writing is significantly more expensive than reading. This raises the question of whether streaming algorithms with small space and number of memory writes are possible. We first demonstrate that, for the fundamental Fpmoment estimation problem with p ≥ 1, any streaming algorithm that achieves a constant factor approximation must make Ω(n1-1/p) internal state changes, regardless of how much space it uses. Perhaps surprisingly, we show that this lower bound can be matched by an algorithm which also has near-optimal space complexity. Specifically, we give a (1+ε)-approximation algorithm for Fpmoment estimation that use a near-optimal ~Oε(n1-1/p) number of state changes, while simultaneously achieving near-optimal space, i.e., for p∈[1,2), our algorithm uses poly(log n,1/ε) bits of space for, while for p>2, the algorithm uses ~Oε(n1-1/p) space. We similarly design streaming algorithms that are simultaneously near-optimal in both space complexity and the number of state changes for the heavy-hitters problem, sparse support recovery, and entropy estimation. Our results demonstrate that an optimal number of state changes can be achieved without sacrificing space complexity. 
    more » « less
  5. Estimating the ε-approximate quantiles or ranks of a stream is a fundamental task in data monitoring. Given a stream x_1,..., x_n from a universe \mathcalU with total order, an additive-error quantile sketch \mathcalM allows us to approximate the rank of any query y\in \mathcalU up to additive ε n error. In 2001, Greenwald and Khanna gave a deterministic algorithm (GK sketch) that solves the ε-approximate quantiles estimation problem using O(ε^-1 łog(ε n)) space \citegreenwald2001space ; recently, this algorithm was shown to be optimal by Cormode and Vesleý in 2020 \citecormode2020tight. However, due to the intricacy of the GK sketch and its analysis, over-simplified versions of the algorithm are implemented in practical applications, often without any known theoretical guarantees. In fact, it has remained an open question whether the GK sketch can be simplified while maintaining the optimal space bound. In this paper, we resolve this open question by giving a simplified deterministic algorithm that stores at most (2 + o(1))ε^-1 łog (ε n) elements and solves the additive-error quantile estimation problem; as a side benefit, our algorithm achieves a smaller constant factor than the \frac11 2 ε^-1 łog(ε n) space bound in the original GK sketch~\citegreenwald2001space. Our algorithm features an easier analysis and still achieves the same optimal asymptotic space complexity as the original GK sketch. Lastly, our simplification enables an efficient data structure implementation, with a worst-case runtime of O(łog(1/ε) + łog łog (ε n)) per-element for the ordinary ε-approximate quantile estimation problem. Also, for the related weighted'' quantile estimation problem, we give efficient data structures for our simplified algorithm which guarantee a worst-case per-element runtime of O(łog(1/ε) + łog łog (ε W_n/w_\textrmmin )), achieving an improvement over the previous upper bound of \citeassadi2023generalizing. 
    more » « less