skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Periodic Signal Denoising: An Analysis-Synthesis Framework Based on Ramanujan Filter Banks and Dictionaries
Ramanujan filter banks (RFB) have in the past been used to identify periodicities in data. These are analysis filter banks with no synthesis counterpart for perfect reconstruction of the original signal, so they have not been useful for denoising periodic signals. This paper proposes to use a hybrid analysissynthesis framework for denoising discrete-time periodic signals. The synthesis occurs via a pruned dictionary designed based on the output energies of the RFB analysis filters. A unique property of the framework is that the denoised output signal is guaranteed to be periodic unlike any of the other methods. For a large range of input noise levels, the proposed approach achieves a stable and high SNR gain outperforming many traditional denoising techniques.  more » « less
Award ID(s):
1712633
PAR ID:
10275658
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proc. IEEE Int. Conf. Acoust. Speech, and Signal Proc
Page Range / eLocation ID:
5100 to 5104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Absence seizures are a type of generalized seizures characterized by a 3 Hz periodic spike and wave discharge pattern in the Electroencephalogram (EEG). The most common way to diagnose them is by detecting such periodic patterns in a patient’s EEG. Recently, a new method known as Ramanujan Filter Bank (RFB) was proposed for identifying, estimating and localizing periodicities in data. The RFB was shown to offer important advantages over traditional period estimation techniques in DSP. In this work, we demonstrate that the RFB offers very useful diagnostic information when applied to EEG signals from absence-seizure patients. 
    more » « less
  2. One of the most basic pieces of information gained from dynamic electromyography is accurately defining muscle action and phase timing within the gait cycle. The human gait relies on selective timing and the intensity of appropriate muscle activations for stability, loading, and progression over the supporting foot during stance, and further to advance the limb in the swing phase. A common clinical practice is utilizing a low-pass filter to denoise integrated electromyogram (EMG) signals and to determine onset and cessation events using a predefined threshold. However, the accuracy of the defining period of significant muscle activations via EMG varies with the temporal shift involved in filtering the signals; thus, the low-pass filtering method with a fixed order and cut-off frequency will introduce a time delay depending on the frequency of the signal. In order to precisely identify muscle activation and to determine the onset and cessation times of the muscles, we have explored here onset and cessation epochs with denoised EMG signals using different filter banks: the wavelet method, empirical mode decomposition (EMD) method, and ensemble empirical mode decomposition (EEMD) method. In this study, gastrocnemius muscle onset and cessation were determined in sixteen participants within two different age groups and under two different walking conditions. Low-pass filtering of integrated EMG (iEMG) signals resulted in premature onset (28% stance duration) in younger and delayed onset (38% stance duration) in older participants, showing the time-delay problem involved in this filtering method. Comparatively, the wavelet denoising approach detected onset for normal walking events most precisely, whereas the EEMD method showed the smallest onset deviation. In addition, EEMD denoised signals could further detect pre-activation onsets during a fast walking condition. A comprehensive comparison is discussed on denoising EMG signals using EMD, EEMD, and wavelet denoising in order to accurately define an onset of muscle under different walking conditions. 
    more » « less
  3. Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often induces signal distortion for high-variation signals such as ECG. In our method, the discrete curvature estimation is adapted to represent the signal variation for the purpose of mitigating signal distortion. By adaptively designing the proper SG filter according to the discrete curvature for each data sample, the proposed method still retains the intrinsic advantage of SG filters of excellent data smoothing and further tackles the challenge of denoising high signal variations with low signal distortion. In our experiment, we compared our method with the EMD-wavelet based method and the non-local means (NLM) denoising method in the performance of both noise elimination and signal distortion reduction. Particularly, for the signal distortion reduction, our method decreases in MSE by 33.33% when compared to EMD-wavelet and by 50% when compared to NLM, and decreases in PRD by 18.25% when compared to EMD-wavelet and by 25.24% when compared to NLM. Our method shows high potential and feasibility in wide applications of ECG denoising for both clinical use and consumer electronics. 
    more » « less
  4. null (Ed.)
    Filter banks on graphs are shown to be useful for analyzing data defined over networks, as they decompose a graph signal into components with low variation and high variation. Based on recent node-asynchronous implementation of graph filters, this study proposes an asynchronous implementation of filter banks on graphs. In the proposed algorithm nodes follow a randomized collect-compute-broadcast scheme: if a node is in the passive stage it collects the data sent by its incoming neighbors and stores only the most recent data. When a node gets into the active stage at a random time instance, it does the necessary filtering computations locally, and broadcasts a state vector to its outgoing neighbors. When the underlying filters (of the filter bank) are rational functions with the same denominator, the proposed filter bank implementation does not require additional communication between the neighboring nodes. However, computations done by a node increase linearly with the number of filters in the bank. It is also proven that the proposed asynchronous implementation converges to the desired output of the filter bank in the mean-squared sense under mild stability conditions. The convergence is verified also with numerical experiments. 
    more » « less
  5. Graph Neural Networks have recently become a prevailing paradigm for various high-impact graph analytical problems. Existing efforts can be mainly categorized as spectral-based and spatial-based methods. The major challenge for the former is to find an appropriate graph filter to distill discriminative information from input signals for learning. Recently, myriads of explorations are made to achieve better graph filters, e.g., Graph Convolutional Network (GCN), which leverages Chebyshev polynomial truncation to seek an approximation of graph filters and bridge these two families of methods. Nevertheless, it has been shown in recent studies that GCN and its variants are essentially employing fixed low-pass filters to perform information denoising. Thus their learning capability is rather limited and may over-smooth node representations at deeper layers. To tackle these problems, we develop a novel graph neural network framework AdaGNN with a well-designed adaptive frequency response filter. At its core, AdaGNN leverages a simple but elegant trainable filter that spans across multiple layers to capture the varying importance of different frequency components for node representation learning. The inherent differences among different feature channels are also well captured by the filter. As such, it empowers AdaGNN with stronger expressiveness and naturally alleviates the over-smoothing problem. We empirically validate the effectiveness of the proposed framework on various benchmark datasets. Theoretical analysis is also provided to show the superiority of the proposed AdaGNN. The open-source implementation of AdaGNN can be found here: https://github.com/yushundong/AdaGNN. 
    more » « less