skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the Limitations of Environment Lighting on Optical See-Through Head-Mounted Displays
Due to the additive light model employed by most optical see-through head-mounted displays (OST-HMDs), they provide the best augmented reality (AR) views in dark environments, where the added AR light does not have to compete against existing real-world lighting. AR imagery displayed on such devices loses a significant amount of contrast in well-lit environments such as outdoors in direct sunlight. To compensate for this, OST-HMDs often use a tinted visor to reduce the amount of environment light that reaches the user’s eyes, which in turn results in a loss of contrast in the user’s physical environment. While these effects are well known and grounded in existing literature, formal measurements of the illuminance and contrast of modern OST-HMDs are currently missing. In this paper, we provide illuminance measurements for both the Microsoft HoloLens 1 and its successor the HoloLens 2 under varying environment lighting conditions ranging from 0 to 20,000 lux. We evaluate how environment lighting impacts the user by calculating contrast ratios between rendered black (transparent) and white imagery displayed under these conditions, and evaluate how the intensity of environment lighting is impacted by donning and using the HMD. Our results indicate the further need for refinement in the design of future OST-HMDs to optimize contrast in environments with illuminance values greater than or equal to those found in indoor working environments.  more » « less
Award ID(s):
1800961
PAR ID:
10275660
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Symposium on Spatial User Interaction
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Light-on-dark color schemes, so-called “Dark Mode,” are becoming more and more popular over a wide range of display technologies and application fields. Many people who have to look at computer screens for hours at a time, such as computer programmers and computer graphics artists, indicate a preference for switching colors on a computer screen from dark text on a light background to light text on a dark background due to perceived advantages related to visual comfort and acuity, specifically when working in low-light environments. In this article, we investigate the effects of dark mode color schemes in the field of optical see-through head-mounted displays (OST-HMDs), where the characteristic “additive” light model implies that bright graphics are visible but dark graphics are transparent . We describe two human-subject studies in which we evaluated a normal and inverted color mode in front of different physical backgrounds and different lighting conditions. Our results indicate that dark mode graphics displayed on the HoloLens have significant benefits for visual acuity and usability, while user preferences depend largely on the lighting in the physical environment. We discuss the implications of these effects on user interfaces and applications. 
    more » « less
  2. Due to the additive light model employed by current optical see-through head-mounted displays (OST-HMDs), the perceived contrast of displayed imagery is reduced with increased environment luminance, often to the point where it becomes difficult for the user to accurately distinguish the presence of visual imagery. While existing contrast models, such as Weber contrast and Michelson contrast, can be used to predict when the observer will experience difficulty distinguishing and interpreting stimuli on traditional dis-plays, these models must be adapted for use with additive displays. In this paper, we present a simplified model of luminance contrast for optical see-through displays derived from Michelson's contrast equation and demonstrate two applications of the model: informing design decisions involving the color of virtual imagery and optimizing environment light attenuation through the use of neutral density filters. 
    more » « less
  3. Rogowitz, Bernice E; Pappas, Thrasyvoulos N (Ed.)
    Augmented reality (AR) combines elements of the real world with additional virtual content, creating a blended viewing environment. Optical see-through AR (OST-AR) accomplishes this by using a transparent beam splitter to overlay virtual elements over a user’s view of the real world. However, the inherent see-through nature of OST-AR carries challenges for color appearance, especially around the appearance of darker and less chromatic objects. When displaying human faces—a promising application of AR technology—these challenges disproportionately affect darker skin tones, making them appear more transparent than lighter skin tones. Still, some transparency in the rendered object may not be entirely negative; people’s evaluations of transparency when interacting with other humans in AR-mediated modalities are not yet fully understood. In this work, two psychophysical experiments were conducted to assess how people evaluate OST-AR transparency across several characteristics including different skin tones, object types, lighting conditions, and display types. The results provide a scale of perceived transparency allowing comparisons to transparency for conventional emissive displays. The results also demonstrate how AR transparency impacts perceptions of object preference and fit within the environment. These results reveal several areas with need for further attention, particularly regarding darker skin tones, lighter ambient lighting, and displaying human faces more generally. This work may be useful in guiding the development of OST-AR technology, and emphasizes the importance of AR design goals, perception of human faces, and optimizing visual appearance in extended reality systems. 
    more » « less
  4. Display technologies in the fields of virtual and augmented reality affect the appearance of human representations, such as avatars used in telepresence or entertainment applications, based on the user’s current viewing conditions. With changing viewing conditions, it is possible that the perceived appearance of one’s avatar changes in an unexpected or undesired manner, which may change user behavior towards these avatars and cause frustration in using the AR display. In this paper, we describe a user study (N=20) where participants saw themselves in a mirror standing next to their own avatar through use of a HoloLens 2 optical see-through head-mounted display. Participants were tasked to match their avatar’s appearance to their own under two environment lighting conditions (200 lux and 2,000 lux). Our results showed that the intensity of environment lighting had a significant effect on participants selected skin colors for their avatars, where participants with dark skin colors tended to make their avatar’s skin color lighter, nearly to the level of participants with light skin color. Further, in particular female participants made their avatar’s hair color darker for the lighter environment lighting condition. We discuss our results with a view on technological limitations and effects on the diversity of avatar representations on optical see-through displays. 
    more » « less
  5. This empirical evaluation aimed to investigate how size perception differs between OST AR and the real world, focusing on two judgment methods: verbal reports and physical judgments. Using a within-subjects experimental design, participants viewed target objects in different sizes in both AR and real-world conditions and estimated their sizes using verbal and physical judgment methods across multiple trials. The study addressed two key hypotheses: (H1) that size perception in AR would differ from the Real World, potentially due to rendering limitations in OST-HMDs, and (H2) that verbal reports and physical judgments would yield different levels of accuracy due to distinct cognitive and perceptual processes involved in each method. Our findings supported these hypotheses, revealing key differences in size perception between the two judgment methods and viewing conditions. Participants consistently underestimated object sizes when using verbal reports in both AR and real-world conditions, with more pronounced errors in AR. In contrast, physical judgments yielded more accurate size estimates under both viewing conditions. Notably, the accuracy of verbal reports decreased as target sizes increased, a trend that was particularly evident in AR. These results underscore the perceptual challenges associated with verbal size judgments in AR and their potential limitations in applications requiring precise size estimations. By highlighting the differences in accuracy and consistency between verbal and physical judgment methods, this study contributes to a deeper understanding of size perception in OST AR and real-world contexts. 
    more » « less