Abstract BackgroundImproving the prediction ability of a human-machine interface (HMI) is critical to accomplish a bio-inspired or model-based control strategy for rehabilitation interventions, which are of increased interest to assist limb function post neurological injuries. A fundamental role of the HMI is to accurately predict human intent by mapping signals from a mechanical sensor or surface electromyography (sEMG) sensor. These sensors are limited to measuring the resulting limb force or movement or the neural signal evoking the force. As the intermediate mapping in the HMI also depends on muscle contractility, a motivation exists to include architectural features of the muscle as surrogates of dynamic muscle movement, thus further improving the HMI’s prediction accuracy. ObjectiveThe purpose of this study is to investigate a non-invasive sEMG and ultrasound (US) imaging-driven Hill-type neuromuscular model (HNM) for net ankle joint plantarflexion moment prediction. We hypothesize that the fusion of signals from sEMG and US imaging results in a more accurate net plantarflexion moment prediction than sole sEMG or US imaging. MethodsTen young non-disabled participants walked on a treadmill at speeds of 0.50, 0.75, 1.00, 1.25, and 1.50 m/s. The proposed HNM consists of two muscle-tendon units. The muscle activation for each unit was calculated as a weighted summation of the normalized sEMG signal and normalized muscle thickness signal from US imaging. The HNM calibration was performed under both single-speed mode and inter-speed mode, and then the calibrated HNM was validated across all walking speeds. ResultsOn average, the normalized moment prediction root mean square error was reduced by 14.58 % ($$p=0.012$$ ) and 36.79 % ($$p<0.001$$ ) with the proposed HNM when compared to sEMG-driven and US imaging-driven HNMs, respectively. Also, the calibrated models with data from the inter-speed mode were more robust than those from single-speed modes for the moment prediction. ConclusionsThe proposed sEMG-US imaging-driven HNM can significantly improve the net plantarflexion moment prediction accuracy across multiple walking speeds. The findings imply that the proposed HNM can be potentially used in bio-inspired control strategies for rehabilitative devices due to its superior prediction.
more »
« less
Volitional Contractility Assessment of Plantar Flexors by Using Non-invasive Neuromuscular Measurements
This paper investigates an ultrasound (US) imaging-based methodology to assess the contraction levels of plantar flexors quantitatively. Echogenicity derived from US imaging at different anatomical depths, including both lateral gastrocnemius (LGS) and soleus (SOL) muscles, is used for the prediction of the volitional isometric plantar flexion moment. Synchronous measurements, including a plantar flexion torque signal, a surface electromyography (sEMG) signal, and US imaging of both LGS and SOL muscles, are collected. Four feature sets, including sole sEMG, sole LGS echogenicity, sole SOL echogenicity, and their fusion, are used to train a Gaussian process regression (GPR) model and predict plantar flexion torque. The experimental results on four non-disabled participants show that the torque prediction accuracy is improved significantly by using the LGS or SOL echogenicity signal than using the sEMG signal. However, there is no significant improvement by using the fused feature compared to sole LGS or SOL echogenicity. The findings imply that using US imaging-derived signals improves the accuracy of predicting volitional effort on human plantar flexors. Potentially, US imaging can be used as a new sensing modality to measure or predict human lower limb motion intent in clinical rehabilitation devices.
more »
« less
- Award ID(s):
- 2002261
- PAR ID:
- 10275667
- Date Published:
- Journal Name:
- 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)
- Page Range / eLocation ID:
- 515 to 520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Robotic assistive or rehabilitative devices are promising aids for people with neurological disorders as they help regain normative functions for both upper and lower limbs. However, it remains challenging to accurately estimate human intent or residual efforts non-invasively when using these robotic devices. In this article, we propose a deep learning approach that uses a brightness mode, that is, B-mode, of ultrasound (US) imaging from skeletal muscles to predict the ankle joint net plantarflexion moment while walking. The designed structure of customized deep convolutional neural networks (CNNs) guarantees the convergence and robustness of the deep learning approach. We investigated the influence of the US imaging’s region of interest (ROI) on the net plantarflexion moment prediction performance. We also compared the CNN-based moment prediction performance utilizing B-mode US and sEMG spectrum imaging with the same ROI size. Experimental results from eight young participants walking on a treadmill at multiple speeds verified an improved accuracy by using the proposed US imaging + deep learning approach for net joint moment prediction. With the same CNN structure, compared to the prediction performance by using sEMG spectrum imaging, US imaging significantly reduced the normalized prediction root mean square error by 37.55% ( $ p $ < .001) and increased the prediction coefficient of determination by 20.13% ( $ p $ < .001). The findings show that the US imaging + deep learning approach personalizes the assessment of human joint voluntary effort, which can be incorporated with assistive or rehabilitative devices to improve clinical performance based on the assist-as-needed control strategy.more » « less
-
null (Ed.)Objective: Functional electrical stimulation (FES) is a common technique to elicit muscle contraction and help improve muscle strength. Traditional FES over the muscle belly typically only activates superficial muscle regions. In the case of hand FES, this prevents the activation of the deeper flexor muscles which control the distal finger joints. Here, we evaluated whether an alternative transcutaneous nerve-bundle stimulation approach can activate both superficial and deep extrinsic finger flexors using a high-density stimulation grid. Methods: Transverse ultrasound of the forearm muscles was used to obtain cross-sectional images of the underlying finger flexors during stimulated finger flexions and kinematically-matched voluntary motions. Finger kinematics were recorded, and an image registration method was used to capture the large deformation of the muscle regions during each flexion. This deformation was used as a surrogate measure of the contraction of muscle tissue, and the regions of expanding tissue can identify activated muscles. Results: The nerve-bundle stimulation elicited contractions in the superficial and deep finger flexors. Both separate and concurrent activation of these two muscles were observed. Joint kinematics of the fingers also matched the expected regions of muscle contractions. Conclusions: Our results showed that the nerve-bundle stimulation technique can activate the deep extrinsic finger flexors, which are typically not accessible via traditional surface FES. Significance: Our nerve-bundle stimulation method enables us to produce the full range of motion of different joints necessary for various functional grasps, which could benefit future neuroprosthetic applications.more » « less
-
Abstract Children born with congenital upper limb absence exhibit consistent and distinguishable levels of biological control over their affected muscles, assessed through surface electromyography (sEMG). This represents a significant advancement in determining how these children might utilize sEMG-controlled dexterous prostheses. Despite this potential, the efficacy of employing conventional sEMG classification techniques for children born with upper limb absence is uncertain, as these techniques have been optimized for adults with acquired amputations. Tuning sEMG classification algorithms for this population is crucial for facilitating the successful translation of dexterous prostheses. To support this effort, we collected sEMG data from a cohort of N = 9 children with unilateral congenital below-elbow deficiency as they attempted 11 hand movements, including rest. Five classification algorithms were used to decode motor intent, tuned with features from the time, frequency, and time–frequency domains. We derived the congenital feature set (CFS) from the participant-specific tuned feature sets, which exhibited generalizability across our cohort. The CFS offline classification accuracy across participants was 73.8% ± 13.8% for the 11 hand movements and increased to 96.5% ± 6.6% when focusing on a reduced set of five movements. These results highlight the potential efficacy of individuals born with upper limb absence to control dexterous prostheses through sEMG interfaces.more » « less
-
A reliable and functional neural interface is necessary to control individual finger movements of assistive robotic hands. Non-invasive surface electromyogram (sEMG) can be used to predict fingertip forces and joint kinematics continuously. However, concurrent prediction of kinematic and dynamic variables in a continuous manner remains a challenge. The purpose of this study was to develop a neural decoding algorithm capable of concurrent prediction of fingertip forces and finger dynamic movements. High-density electromyogram (HD-EMG) signal was collected during finger flexion tasks using either the index or middle finger: isometric, dynamic, and combined tasks. Based on the data obtained from the two first tasks, motor unit (MU) firing activities associated with individual fingers and tasks were derived using a blind source separation method. MUs assigned to the same tasks and fingers were pooled together to form MU pools. Twenty MUs were then refined using EMG data of a combined trial. The refined MUs were applied to a testing dataset of the combined task, and were divided into five groups based on the similarity of firing patterns, and the populational discharge frequency was determined for each group. Using the summated firing frequencies obtained from five groups of MUs in a multivariate linear regression model, fingertip forces and joint angles were derived concurrently. The decoding performance was compared to the conventional EMG amplitude-based approach. In both joint angles and fingertip forces, MU-based approach outperformed the EMG amplitude approach with a smaller prediction error (Force: 5.36±0.47 vs 6.89±0.39 %MVC, Joint Angle: 5.0±0.27° vs 12.76±0.40°) and a higher correlation (Force: 0.87±0.05 vs 0.73±0.1, Joint Angle: 0.92±0.05 vs 0.45±0.05) between the predicted and recorded motor output. The outcomes provide a functional and accurate neural interface for continuous control of assistive robotic hands.more » « less
An official website of the United States government

