skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Absence of Superconductivity in the Hubbard Dimer Model for κ-(BEDT-TTF)2X
In the most studied family of organic superconductors κ-(BEDT-TTF)2X, the BEDT-TTF molecules that make up the conducting planes are coupled as dimers. For some anions X, an antiferromagnetic insulator is found at low temperatures adjacent to superconductivity. With an average of one hole carrier per dimer, the BEDT-TTF band is effectively 12-filled. Numerous theories have suggested that fluctuations of the magnetic order can drive superconducting pairing in these models, even as direct calculations of superconducting pairing in monomer 12-filled band models find no superconductivity. Here, we present accurate zero-temperature Density Matrix Renormalization Group (DMRG) calculations of a dimerized lattice with one hole per dimer. While we do find an antiferromagnetic state in our results, we find no evidence for superconducting pairing. This further demonstrates that magnetic fluctuations in the effective 12-filled band approach do not drive superconductivity in these and related materials.  more » « less
Award ID(s):
1764152
PAR ID:
10275770
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Crystals
Volume:
11
Issue:
6
ISSN:
2073-4352
Page Range / eLocation ID:
580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the fluctuations responsible for pairing in the d -wave superconducting state of the two-dimensional Hubbard model at intermediate coupling within a cluster dynamical mean-field theory with a numerically exact quantum impurity solver. By analyzing how momentum- and frequency-dependent fluctuations generate the d -wave superconducting state in different representations, we identify antiferromagnetic fluctuations as the pairing glue of superconductivity in both the underdoped and the overdoped regime. Nevertheless, in the intermediate coupling regime, the predominant magnetic fluctuations may differ significantly from those described by conventional spin fluctuation theory. 
    more » « less
  2. Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states. 
    more » « less
  3. Do charge modulations compete with electron pairing in high-temperature copper oxide superconductors? We investigated this question by suppressing superconductivity in a stripe-ordered cuprate compound at low temperature with high magnetic fields. With increasing field, loss of three-dimensional superconducting order is followed by reentrant two-dimensional superconductivity and then an ultraquantum metal phase. Circumstantial evidence suggests that the latter state is bosonic and associated with the charge stripes. These results provide experimental support to the theoretical perspective that local segregation of doped holes and antiferromagnetic spin correlations underlies the electron-pairing mechanism in cuprates. 
    more » « less
  4. Abstract Conventional superconductivity emerges from pairing of charge carriers—electrons or holes—mediated by phonons 1 . In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations 2 , as captured by models of mobile charges in doped antiferromagnets 3 . However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years. Early theoretical studies predicted magnetic-mediated pairing of dopants in ladder systems 4–8 , in which idealized theoretical toy models explained how pairing can emerge despite repulsive interactions 9 . Here we experimentally observe this long-standing theoretical prediction, reporting hole pairing due to magnetic correlations in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders with mixed-dimensional couplings 10 , we suppress Pauli blocking of holes at short length scales. This results in a marked increase in binding energy and decrease in pair size, enabling us to observe pairs of holes predominantly occupying the same rung of the ladder. We find a hole–hole binding energy of the order of the superexchange energy and, upon increased doping, we observe spatial structures in the pair distribution, indicating repulsion between bound hole pairs. By engineering a configuration in which binding is strongly enhanced, we delineate a strategy to increase the critical temperature for superconductivity. 
    more » « less
  5. Abstract

    The superconducting state and mechanism are among the least understood phenomena in twisted graphene systems. Recent tunneling experiments indicate a transition between nodal and gapped pairing with electron filling, which is not naturally understood within current theory. We demonstrate that the coexistence of superconductivity and flavor polarization leads to pairing channels that are guaranteed by symmetry to be entirely band-off-diagonal, with a variety of consequences: most notably, the pairing invariant under all symmetries can have Bogoliubov Fermi surfaces in the superconducting state with protected nodal lines, or may be fully gapped, depending on parameters, and the band-off-diagonal chiralp-wave state exhibits transitions between gapped and nodal regions upon varying the doping. We demonstrate that band-off-diagonal pairing can be the leading state when only phonons are considered, and is also uniquely favored by fluctuations of a time-reversal-symmetric intervalley coherent order motivated by recent experiments. Consequently, band-off-diagonal superconductivity allows for the reconciliation of several key experimental observations in graphene moiré systems.

     
    more » « less