skip to main content


Title: College faculty support for grade 7-12 teaching careers: survey results and comparisons to student perceptions
The United States is facing a critical shortage of grade 7-12 teachers in the STEM disciplines, particularly in physics, chemistry, and mathematics. Faculty members play a major role in their students' career choices, and faculty members' perceptions of the profession may determine whether students choose to pursue teaching. To this end, we developed two surveys to measure student and faculty perceptions of grade 7-12 teaching. We found that both groups hold many incorrect beliefs about teaching careers. Furthermore, we found that faculty members believe they are quite supportive of future teachers, while students perceive that they are less supportive. Our findings highlight the need for both faculty members and students to be informed about the benefits of careers in grade 7-12 teaching. Additionally, our results suggest that faculty members should work to dispel their internal biases surrounding the teaching profession, which may inadvertently drive students away from grade 7-12 teaching.  more » « less
Award ID(s):
1821710
NSF-PAR ID:
10275816
Author(s) / Creator(s):
; ; ;
Editor(s):
Wolf, Steven F.; Bennett, Michael B.; Frank, Brian W.
Date Published:
Journal Name:
2020 Physics Education Research Conference Proceedings
Page Range / eLocation ID:
291 to 296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wolf, Steven F. ; Bennett, Michael B. ; Frank, Brian W. (Ed.)
    Results from the Perceptions of Teaching as a Profession (PTaP) instrument--which measures views students have of the grade 7-12 teaching career--prompted the development of a parallel instrument to measure the perceptions of the grade 7-12 teaching profession in the eyes of those advising and influencing student opinions of the profession: the faculty. Thirty faculty interviews were conducted across four different institutions of higher education as part of the development of the Perceptions of Teaching as a Profession in Higher Education (PTaP.HE) instrument, which investigates faculty opinions, accuracy of information, and thoughts regarding grade 7-12 teaching. The instrument measures the perceived supportive (or unsupportive) nature of a department towards the teaching profession, guide teacher preparation organizations on how to approach faculty, and correlate students' perceptions with their influencers. Faculty interviews verified statement interpretation consistency, while also providing anecdotal insights into faculty views. 
    more » « less
  2. Wolf, Steven F. ; Bennett, Michael B. ; Frank, Brian W. (Ed.)
    Nearly half of STEM majors in the United States express interest in becoming a grade 7-12 teacher, yet as a nation we face a shortage of qualified math and science teachers. Studies have found that misperceptions about grade 7-12 math and science teaching are impacting student career choices. As part of the Get the Facts Out project, this work addresses faculty perceptions of grade 7-12 teaching because faculty play an important role in student career decisions. Additionally, understanding how faculty perceptions of grade 7-12 teaching differ may inform targeted efforts to change perceptions in the future. In this study, nearly 500 college STEM faculty members' perceptions of grade 7-12 teaching were measured using a newly developed survey. Faculty perceptions were then compared based on department affiliation, position type, and gender. No significantly practical differences were found based on these demographics. Implications for STEM teacher recruitment are discussed. 
    more » « less
  3. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing. 
    more » « less
  4. Despite efforts to diversify the engineering workforce, the field remains dominated by White, male engineers. Research shows that underrepresented groups, including women and minorities, are less likely to identify and engage with scientific texts and literacy practices. Often, children of minority groups and/or working-class families do not receive the same kinds of exposure to science, technology, engineering, and mathematics (STEM) knowledge and practices as those from majority groups. Consequently, these children are less likely to engage in school subjects that provide pathways to engineering careers. Therefore, to mitigate the lack of diversity in engineering, new approaches able to broadly support engineering literacy are needed. One promising approach is disciplinary literacy instruction (DLI). DLI is a method for teaching students how advanced practitioners in a given field generate, interpret, and evaluate discipline-specific texts. DLI helps teachers provide access to to high quality, discipline-specific content to all students, regardless of race, ethnicity, gender, or socio-economic status, Therefore, DLI has potential to reduce literacy-based barriers that discourage underrepresented students from pursuing engineering careers. While models of DLI have been developed and implemented in history, science, and mathematics, little is known about DLI in engineering. The purpose of this research is to identify the authentic texts, practices, and evaluative frameworks employed by professional engineers to inform a model of DLI in engineering. While critiques of this approach may suggest that a DLI model will reflect the literacy practices of majority engineering groups, (i.e., White male engineers), we argue that a DLI model can directly empower diverse K-16 students to become engineers by instructing them in the normed knowledge and practices of engineering. This paper presents a comparative case study conducted to investigate the literacy practices of electrical and mechanical engineers. We scaffolded our research using situated learning theory and rhetorical genre studies and considered the engineering profession as a community of practice. We generated multiple types of data with four participants (i.e., two electrical and two mechanical engineers). Specifically, we generated qualitative data, including written field notes of engineer observations, interview transcripts, think-aloud protocols, and engineer logs of literacy practices. We used constant comparative analysis (CCA) coding techniques to examine how electrical and mechanical engineers read, wrote, and evaluated texts to identify the frameworks that guide their literacy practices. We then conducted within-group and cross-group constant comparative analyses (CCA) to compare and contrast the literacy practices specific to each sub-discipline Findings suggest that there are two types of engineering literacy practices: those that resonate across both mechanical and electrical engineering disciplines and those that are specific to each discipline. For example, both electrical and mechanical engineers used test procedures to review and assess steps taken to evaluate electrical or mechanical system performance. In contrast, engineers from the two sub-disciplines used different forms of representation when depicting components and arrangements of engineering systems. While practices that are common across sub-disciplines will inform a model of DLI in engineering for K-12 settings, discipline-specific practices can be used to develop and/or improve undergraduate engineering curricula. 
    more » « less
  5. null (Ed.)
    Recognizing the need to attract and retain the most talented individuals to STEM professions, the National Academies advocate that diversity in STEM must be a national priority. To build a diverse workforce, educators within engineering must continue working to create an inclusive environment to prevent historically underrepresented students from leaving the field. Additionally, previous research provides compelling evidence that diversity among students and faculty is crucially important to the intellectual and social development of all students, and failure to create an inclusive environment for minority students negatively affects both minority and majority students. The dearth of research on the experiences of LGBTQ individuals in engineering is a direct barrier to improving the climate for LGBTQ in our classrooms, departments and profession. Recent studies show that engineering can be a “chilly climate” for LGBTQ individuals where “passing and covering” demands are imposed by a hetero/cis-normative culture within the profession. The unwelcoming climate for LGBTQ individuals in engineering may be a key reason that they are more likely than non-LGBTQ peers to leave engineering. This project builds on the success of a previous exploratory project entitled Promoting LGBTQ Equality in Engineering through Virtual Communities of Practice (VCP), hosted by ASEE (EEC 1539140). This project will support engineering departments’ efforts to create LGBTQ-inclusive environments using knowledge generated from the original grant. Our research focuses on understanding how Community of Practice (COP) characteristics develop among STEM faculty who work to increase LGBTQ inclusion; how STEM faculty as part of the VCP develop a change agent identity, and what strategies are effective in reshaping norms and creating LGBTQ-inclusive STEM departments. Therefore, our guiding research question is: How does a Virtual Community of Practice of STEM faculty develop from a group committed to improving the culture for the LGBTQ community? To answer our research question, we designed a qualitative Interpretive Phenomenological Analysis (IPA) study based on in-depth individual interviews. Our study participants are STEM faculty across all ranks and departments. Our sample includes 16 STEM faculty participants. After consulting with IPA experts to establish face validation, we piloted the interview protocol with three experienced qualitative researchers. The focus of this paper presents the results of the pilot study and preliminary themes from a sample of the 16 individual interviews. Most participants discussed the supportive and affirming nature of the community. Interestingly, the supportive culture of the virtual community led to members to translate support to LGBTQ students or colleagues at their home institution. Additionally, the participants spoke in detail about how the group supported their identity development as an educator and as a professional (e.g. engineering identity) in addition to seeking opportunities to combine their advocacy work with their research. Therefore, the supportive culture and safe space to negotiate identity development allows the current VCP to develop. Future work of the group will translate the research findings into practice through the iterative refinement of the community’s advocacy and education efforts including the Safe Zone workshops. 
    more » « less