skip to main content

Title: TLDR: time lag/delay reconstructor
ABSTRACT We present the time lag/delay reconstructor (TLDR), an algorithm for reconstructing velocity delay maps in the maximum a posteriori framework for reverberation mapping. Reverberation mapping is a tomographical method for studying the kinematics and geometry of the broad-line region of active galactic nuclei at high spatial resolution. Leveraging modern image reconstruction techniques, including total variation and compressed sensing, TLDR applies multiple regularization schemes to reconstruct velocity delay maps using the alternating direction method of multipliers. Along with the detailed description of the TLDR algorithm we present test reconstructions from TLDR applied to synthetic reverberation mapping spectra as well as a preliminary reconstruction of the Hβ feature of Arp 151 from the 2008 Lick Active Galactic Nuclei Monitoring Project.
; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
2903 to 2912
Sponsoring Org:
National Science Foundation
More Like this
  1. The size and structure of the dusty circumnuclear torus in active galactic nuclei (AGNs) can be investigated by analyzing the temporal response of the torus's infrared (IR) dust emission to variations in the AGN ultraviolet/optical luminosity. This method, reverberation mapping, is applicable over a wide redshift range, but the IR response is sensitive to several poorly constrained variables relating to the dust distribution and its illumination, complicating the interpretation of measured reverberation lags. We have used an enhanced version of our torus reverberation mapping code (TORMAC) to conduct a comprehensive exploration of the torus response functions at selected wavelengths, formore »the standard interstellar medium grain composition. The shapes of the response functions vary widely over the parameter range covered by our models, with the largest variations occurring at shorter wavelengths (≤4.5 μm). The reverberation lag, quantified as the response-weighted delay (RWD), is most affected by the radial depth of the torus, the steepness of the radial cloud distribution, the degree of anisotropy of the AGN radiation field, and the volume filling factor. Nevertheless, we find that the RWD provides a reasonably robust estimate, to within a factor of ~3, of the luminosity-weighted torus radius, confirming the basic assumption underlying reverberation mapping. However, overall, the models predict radii at 2.2 μm that are typically a factor of ~2 larger than those derived from K-band reverberation mapping. This is likely an indication that the innermost region of the torus is populated by clouds dominated by large graphite grains.« less
  2. We present new near-infrared VLTI/GRAVITY interferometric spectra that spatially resolve the broad Br γ emission line in the nucleus of the active galaxy IRAS 09149−6206. We use these data to measure the size of the broad line region (BLR) and estimate the mass of the central black hole. Using an improved phase calibration method that reduces the differential phase uncertainty to 0.05° per baseline across the spectrum, we detect a differential phase signal that reaches a maximum of ∼0.5° between the line and continuum. This represents an offset of ∼120  μ as (0.14 pc) between the BLR and the centroidmore »of the hot dust distribution traced by the 2.3 μ m continuum. The offset is well within the dust sublimation region, which matches the measured ∼0.6 mas (0.7 pc) diameter of the continuum. A clear velocity gradient, almost perpendicular to the offset, is traced by the reconstructed photocentres of the spectral channels of the Br γ line. We infer the radius of the BLR to be ∼65  μ as (0.075 pc), which is consistent with the radius–luminosity relation of nearby active galactic nuclei derived based on the time lag of the H β line from reverberation mapping campaigns. Our dynamical modelling indicates the black hole mass is ∼1 × 10 8   M ⊙ , which is a little below, but consistent with, the standard M BH – σ * relation.« less
  3. Abstract In recent years, continuum-reverberation mapping involving high-cadence UV/optical monitoring campaigns of nearby active galactic nuclei has been used to infer the size of their accretion disks. One of the main results from these campaigns has been that in many cases the accretion disks appear too large, by a factor of 2–3, compared to standard models. Part of this may be due to diffuse continuum emission from the broad-line region (BLR), which is indicated by excess lags around the Balmer jump. Standard cross-correlation lag-analysis techniques are usually used to just recover the peak or centroid lag and cannot easily distinguishmore »between reprocessing from the disk and BLR. However, frequency-resolved lag analysis, where the lag is determined at each Fourier frequency, has the potential to separate out reprocessing on different size scales. Here we present simulations to demonstrate the potential of this method and then apply a maximum-likelihood approach to determine frequency-resolved lags in NGC 5548. We find that the lags in NGC 5548 generally decrease smoothly with increasing frequency, and are not easily described by accretion-disk reprocessing alone. The standard cross-correlation lags are consistent with lags at frequencies lower than 0.1 day −1 , indicating they are dominated from reprocessing at size scales greater than ∼10 light days. A combination of a more distant reprocessor, consistent with the BLR, along with a standard-sized accretion disk is more consistent with the observed lags than a larger disk alone.« less
  4. Abstract We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities of λ L λ (5100 Å) ≈ 10 44 erg s −1 and predicted H β lags of ∼20–30 days or black hole masses of 10 7 –10 8.5 M ⊙ , our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we presentmore »the first results from the campaign, including H β emission-line light curves, integrated H β lag times (8–30 days) measured against V -band continuum light curves, velocity-resolved reverberation lags, line widths of the broad H β components, and virial black hole mass estimates (10 7.1 –10 8.1 M ⊙ ). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.« less

    We examine the long-term optical/near-infrared (NIR) flux variability of a ‘changing-look’ active galactic nucleus (AGN) Mrk 590 between 1998 and 2007. Multiband multi-epoch optical/NIR photometry data from the SDSS Stripe 82 data base and the Multicolor Active Galactic Nuclei Monitoring (MAGNUM) project reveal that Mrk 590 experienced a sudden luminosity decrease during the period from 2000 to 2001. Detection of dust reverberation lag signals between V- and K-band light curves obtained by the MAGNUM project during the faint state in 2003–2007 suggests that the dust torus innermost radius Rdust of Mrk 590 had become very small [Rdust ≃ 32 light-days (lt-days)] by themore »year 2004 according to the aforementioned significant decrease in AGN luminosity. The Rdust in the faint state is comparable to the H β broad-line region (BLR) radius of RH β, BLR ≃ 26 lt-days measured by previous reverberation mapping observations during the bright state of Mrk 590 in 1990–1996. These observations indicate that the innermost radius of the dust torus in Mrk 590 decreased rapidly after the AGN ultraviolet-optical luminosity drop, and that the replenishment time-scale of the innermost dust distribution is less than 4 yr, which is much shorter than the free fall time-scale of BLR gas or dust clouds. We suggest that rapid replenishment of the innermost dust distribution can be accomplished either by new dust formation in radiatively cooled BLR gas clouds or by new dust formation in the disc atmosphere and subsequent vertical wind from the dusty disc as a result of radiation pressure.

    « less