Abstract Oceanic mesoscale motions including eddies, meanders, fronts, and filaments comprise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the rates of these cascades, remain difficult to directly observe and quantify despite their impacts on physical and biological processes. Here we use global observations to investigate the seasonality of surface kinetic energy and upper-ocean potential energy. We apply spatial filters to along-track satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60–300-km scales. A geographic and scale-dependent seasonal cycle appears throughout much of the midlatitudes, with eddy kinetic energy at scales less than 60 km peaking 1–4 months before that at 60–300-km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived estimate of the conversion of potential to kinetic energy is seasonally varying. In midlatitudes, the conversion rate peaks 0–2 months prior to kinetic energy at scales less than 60 km. The consistent geographic patterns between the seasonality of potential energy conversion and kinetic energy across spatial scale provide observational evidence for the inverse cascade and demonstrate that some component of it is seasonally modulated. Implications for mesoscale parameterizations and numerical modeling are discussed. Significance Statement This study investigates the seasonality of upper-ocean potential and kinetic energy in the context of an inverse cascade, consisting of energy transfers to and through the mesoscale. Observations show a scale-dependent cycle in kinetic energy that coincides with temporal variability in mixed layer potential energy and progresses seasonally from smaller to larger scales. This pattern appears dominant over large regions of the ocean. Results are relevant to ocean and climate models, where a large fraction of ocean energy is often parameterized. A customizable code repository and dataset are provided to enable comparisons of model-based resolved and unresolved kinetic energy to observational equivalents. Implications result for a range of processes including mixed layer stratification and vertical structure of ocean currents.
more »
« less
Scale of oceanic eddy killing by wind from global satellite observations
Wind is the primary driver of the oceanic general circulation, yet the length scales at which this energy transfer occurs are unknown. Using satellite data and a recent method to disentangle multiscale processes, we find that wind deposits kinetic energy into the geostrophic ocean flow only at scales larger than 260 km, on a global average. We show that wind removes energy from scales smaller than 260 km at an average rate of −50 GW, a process known as eddy killing. To our knowledge, this is the first objective determination of the global eddy killing scale. We find that eddy killing is taking place at almost all times but with seasonal variability, peaking in winter, and it removes a substantial fraction (up to 90%) of the wind power input in western boundary currents. This process, often overlooked in analyses and models, is a major dissipation pathway for mesoscales, the ocean’s most energetic scales.
more »
« less
- Award ID(s):
- 2020249
- PAR ID:
- 10275915
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 28
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabf4920
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sensitivity of large eddy simulations of tropical cyclone to sub-grid scale mixing parameterization.The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem.more » « less
-
null (Ed.)Abstract Motivated by observations of a strong near-inertial wave signal at the base of the semipermanent anticyclonic Cyprus Eddy during the 2010 Biogeochemistry from the Oligotrophic to the Ultraoligotrophic Mediterranean (BOUM) experiment, a numerical study is performed to investigate the role of near-inertial/eddy interactions in energy transfer out of the mixed layer. A hybrid temporal–spatial decomposition is used to split all variables into three independent components: slow (eddy) and fast (inertial oscillations + waves), which proves useful in understanding the flow dynamics. Through a detailed energy budget analysis, we find that the anticyclonic eddy acts as a catalyst in transferring wind-driven inertial energy to propagating waves. While the eddy sets the spatial scales of the waves, it does not participate in any energy exchange. Near-inertial propagation through the eddy core results in the formation of multiple critical levels with the largest accumulation of wave energy at the base of the eddy. A complementary ray-tracing analysis reveals critical-level formation when the surface-confined inertial rays originate within the negative vorticity region. In contrast, rays originating outside this region focus at the base of the eddy and can propagate at depth.more » « less
-
Abstract. Wind work at the air-sea interface is the transfer of kinetic energy between the ocean and the atmosphere and, as such, is an important part of the ocean-atmosphere coupled system. Wind work is defined as the scalar product of ocean wind stress and surface current, with each of these two variables spanning, in this study, a broad range of spatial and temporal scales, from 10 km to more than 3000 km and hours to months. These characteristics emphasize wind work's multiscale nature. In the absence of appropriate global observations, our study makes use of a new global, coupled ocean-atmosphere simulation, with horizontal grid spacing of 2–5 km for the ocean and 7 km for the atmosphere, analyzed for 12 months.We develop a methodology, both in physical and spectral spaces, to diagnose three different components of wind work that force distinct classes of ocean motions, including high-frequency internal gravity waves, such as near-inertial oscillations, low-frequency currents such as those associated with eddies, and seasonally averaged currents, such as zonal tropical and equatorial jets.The total wind work, integrated globally, has a magnitude close to 5 TW, a value that matches recent estimates. Each of the first two components that force high-frequency and low-frequency currents, accounts for ∼ 28 % of the total wind work and the third one that forces seasonally averaged currents, ∼ 44 %. These three components, when integrated globally, weakly vary with seasons but their spatial distribution over the oceans has strong seasonal and latitudinal variations. In addition, the high-frequency component that forces internal gravity waves, is highly sensitive to the collocation in space and time (at scales of a few hours) of wind stresses and ocean currents. Furthermore, the low-frequency wind work component acts to dampen currents with a size smaller than 250 km and strengthen currents with larger sizes. This emphasizes the need to perform a full kinetic budget involving the wind work and nonlinear advection terms as small and larger-scale low-frequency currents interact through these nonlinear terms.The complex interplay of surface wind stresses and currents revealed by the numerical simulation motivates the need for winds and currents satellite missions to directly observe wind work.more » « less
-
Energy Cascades and Loss of Balance in a Reentrant Channel Forced by Wind Stress and Buoyancy Fluxesnull (Ed.)Abstract A large fraction of the kinetic energy in the ocean is stored in the “quasigeostrophic” eddy field. This “balanced” eddy field is expected, according to geostrophic turbulence theory, to transfer energy to larger scales. In order for the general circulation to remain approximately steady, instability mechanisms leading to loss of balance (LOB) have been hypothesized to take place so that the eddy kinetic energy (EKE) may be transferred to small scales where it can be dissipated. This study examines the kinetic energy pathways in fully resolved direct numerical simulations of flow in a flat-bottomed reentrant channel, externally forced by surface buoyancy fluxes and wind stress in a configuration that resembles the Antarctic Circumpolar Current. The flow is allowed to reach a statistical steady state at which point it exhibits both a forward and an inverse energy cascade. Flow interactions with irregular bathymetry are excluded so that bottom drag is the sole mechanism available to dissipate the upscale EKE transfer. The authors show that EKE is dissipated preferentially at small scales near the surface via frontal instabilities associated with LOB and a forward energy cascade rather than by bottom drag after an inverse energy cascade. This is true both with and without forcing by the wind. These results suggest that LOB caused by frontal instabilities near the ocean surface could provide an efficient mechanism, independent of boundary effects, by which EKE is dissipated. Ageostrophic anticyclonic instability is the dominant frontal instability mechanism in these simulations. Symmetric instability is also important in a “deep convection” region, where it can be sustained by buoyancy loss.more » « less
An official website of the United States government

