skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Modeled Response of South American Climate to Three Decades of Deforestation
Abstract This study investigates the potential effects of historical deforestation in South America using a regional climate model driven with reanalysis data. Two different sources of data were used to quantify deforestation during the 1980s to 2010s, leading to two scenarios of forest loss: smaller but spatially continuous in scenario 1 and larger but spatially scattered in scenario 2. The model simulates a generally warmer and drier local climate following deforestation. Vegetation canopy becomes warmer due to reduced canopy evapotranspiration, and ground becomes warmer due to more radiation reaching the ground. The warming signal for surface air is weaker than for ground and vegetation, likely due to reduced surface roughness suppressing the sensible heat flux. For surface air over deforested areas, the warming signal is stronger for the nighttime minimum temperature and weaker or even becomes a cooling signal for the daytime maximum temperature, due to the strong radiative effects of albedo at midday, which reduces the diurnal amplitude of temperature. The drying signals over deforested areas include lower atmospheric humidity, less precipitation, and drier soil. The model identifies the La Plata basin as a region remotely influenced by deforestation, where a simulated increase of precipitation leads to wetter soil, higher ET, and a strong surface cooling. Over both deforested and remote areas, the deforestation-induced surface climate changes are much stronger in scenario 2 than scenario 1; coarse-resolution data and models (such as in scenario 1) cannot represent the detailed spatial structure of deforestation and underestimate its impact on local and regional climates.  more » « less
Award ID(s):
1659953
PAR ID:
10276132
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
34
Issue:
6
ISSN:
0894-8755
Page Range / eLocation ID:
2189 to 2203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rainforest in protected areas in the Brazilian Amazon is at risk due to increasing economic pressures and recent weakening of environmental agencies and legislation by the federal administration. This study examines the impacts of deforestation in protected areas on dry‐season precipitation in the Brazilian state of Rondônia located in the southwestern Brazilian Amazon. Regional‐climate model simulations indicate that clearing protected forests in Rondônia would result in substantial changes to the surface energy balance, including increased sensible and decreased latent heat flux. Consequent changes to low‐level wind circulation would enhance moisture flux convergence and convection over the newly deforested areas, leading to enhanced rainfall in those areas. However, deforestation of protected areas would decrease dry season rainfall up to 30% in the existing agricultural region, with potentially important negative impacts on agricultural production. Additionally, our results indicate that following deforestation, the newly degraded areas will experience warmer and drier afternoons that could place the remaining natural vegetation under vapor deficit stress.

     
    more » « less
  2. Rainfall in the Amazon is influenced by atmospheric circulation dynamics on multiple spatiotemporal scales. Anthropogenic influences such as deforestation, land-use changes, and global climate change are also critical factors in determining rainfall in South America. Modeling studies have projected a drier climate with the ongoing deforestation in the Amazon, but observational evaluation of the variability of rainfall and deforestation patterns has been limited. This study analyzes spatiotemporal trends in rainfall between 1981 and 2020 and relationships with deforestation age in the Brazilian Legal Amazon (BLA). An improved rainfall dataset is derived by calibrating the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data with observations from a rain gauge network in the BLA. Trend analysis is employed to identify significant changes in precipitation over the BLA. Satellite-based land cover data Mapbiomas and ET datasets are used to evaluate similar trends. While large spatial variability is observed, the results show coherent relationships between negative dry-season rainfall trends and old-age deforested areas. Deforestation aged up to a decade enhanced rainfall and older deforested regions have reduced rainfall during the dry season. These results suggest substantial changes in the hydroclimate of the BLA and increased vulnerability to future land cover change. 
    more » « less
  3. Abstract

    Ongoing degradation of the Congolese rain forest is documented, but the individual roles of climate change and deforestation are unknown. A modified version of the Centro de Previsao de Tempo e Estudios Climaticos (CPTEC) potential vegetation model (PVM) forced by ERA5 reanalysis data translates decadal climate states (1980–2020) into natural vegetation distributions to identify regions where climate change could have played a role in changing vegetation. These areas are then examined to understand how and why these climate changes could affect the tropical rain forest coverage. Between the 1980s and the 2010s, the climate over the northern and southern Congo basin rain forest margins becomes less able to support the forest. In the north, strong, negative meridional moisture gradients in boreal winter separate warm, dry conditions to the north from the cooler, moist rain forest. By the 2010s greenhouse gas warming deepens the low-level trough in the north, enhancing the inflow of drier subtropical air. A similar drying response occurs over the southern margin during austral winter when the low-level westerly transport of Atlantic moisture decreases in association with warming and reduced low-level heights over the equatorial Congo basin. In the interior, climate conditions also become less favorable along major transportation routes by the 2010s due to human intervention/deforestation. Along coastal Angola, the climate becomes more favorable for tropical forest vegetation when coastal upwelling weakens and SSTs warm in response to changes in the South Atlantic subtropical anticyclone. These results have implications for the future as global warming continues.

     
    more » « less
  4. Abstract

    In the western USA, shifts from snow to rain precipitation regimes and increases in western juniper cover in shrub‐dominated landscapes can alter surface water input via changes in snowmelt and throughfall. To better understand how shifts in both precipitation and semi‐arid vegetation cover alter above‐ground hydrological processes, we assessed how rain interception differs between snow and rain surface water input; how western juniper alters snowpack dynamics; and how these above‐ground processes differ across western juniper, mountain big sagebrush and low sagebrush plant communities. We collected continuous surface water input with four large lysimeters, interspace and below‐canopy snow depth data and conducted periodic snow surveys for two consecutive water years (2013 and 2014). The ratio of interspace to below‐canopy surface water input was greater for snow relative to rain events, averaging 79.4% and 54.8%, respectively. The greater surface water input ratio for snow is in part due to increased deposition of redistributed snow under the canopy. We simulated above‐ground energy and water fluxes in western juniper, low sagebrush and mountain big sagebrush for two 8‐year periods under current and projected mid‐21st century warmer temperatures with the Simultaneous Heat and Water (SHAW) model. Juniper compared with low and mountain sagebrush reduced surface water input by an average of 138 mm or 24% of the total site water budget. Conversely, warming temperatures reduced surface water input by only an average of 14 mm across the three vegetation types. The future (warmer) simulations resulted in earlier snow disappearance and surface water input by 51 and 45 days, respectively, across juniper, low sagebrush and mountain sagebrush. Information from this study can help land managers in the sagebrush steppe understand how both shifts in climate and semi‐arid vegetation will alter fundamental hydrological processes. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  5. Abstract. Large-scale reforestation, afforestation, and forest restoration schemes have gained global support as climate change mitigation strategies due to their significant carbon dioxide removal (CDR) potential. However, there has been limited research into the unintended consequences of forestation from a biophysical perspective. In the Community Earth System Model version 2 (CESM2), we apply a global forestation scenario, within a Paris Agreement-compatible warming scenario, to investigate the land surface and hydroclimate response. Compared to a control scenario where land use is fixed to present-day levels, the forestation scenario is up to 2 °C cooler at low latitudes by 2100, driven by a 10 % increase in evaporative cooling in forested areas. However, afforested areas where grassland or shrubland are replaced lead to a doubling of plant water demand in some tropical regions, causing significant decreases in soil moisture (∼ 5 % globally, 5 %–10 % regionally) and water availability (∼ 10 % globally, 10 %–15 % regionally) in regions with increased forest cover. While there are some increases in low cloud and seasonal precipitation over the expanded tropical forests, with enhanced negative cloud radiative forcing, the impacts on large-scale precipitation and atmospheric circulation are limited. This contrasts with the precipitation response to simulated large-scale deforestation found in previous studies. The forestation scenario demonstrates local cooling benefits without major disruption to global hydrodynamics beyond those already projected to result from climate change, in addition to the cooling associated with CDR. However, the water demands of extensive forestation, especially afforestation, have implications for its viability, given the uncertainty in future precipitation changes.

     
    more » « less