skip to main content


Title: An Education Theory of Fault for Autonomous Systems
Automated systems like self-driving cars and “smart” thermostats are a challenge for fault-based legal regimes like negligence because they have the potential to behave in unpredictable ways. How can people who build and deploy complex automated systems be said to be at fault when they could not have reasonably anticipated the behavior (and thus risk) of their tools?  more » « less
Award ID(s):
2024872
NSF-PAR ID:
10276289
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Emerging Technologies
Volume:
2
Issue:
1
ISSN:
0973-2993
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL not only improves fault localization for manual repair, but also extends the application scope of automated repair to all possible bugs (not only the small ratio of bugs that can be automatically fixed). However, ProFL only considers one APR system (i.e., PraPR), and it is not clear how other existing APR systems based on different designs contribute to unified debugging. In this work, we perform an extensive study of the unified-debugging approach on 16 state-of-the-art program repair systems for the first time. Our experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified debugging, such as (1) nearly all the studied 16 repair systems can positively contribute to unified debugging despite their varying repairing capabilities, (2) repair systems targeting multi-edit patches can bring extraneous noise into unified debugging, (3) repair systems with more executed/plausible patches tend to perform better for unified debugging, and (4) unified debugging effectiveness does not rely on the availability of correct patches in automated repair. Based on our results, we further propose an advanced unified debugging technique, UniDebug++, which can localize over 20% more bugs within Top-1 positions than state-of-the-art unified debugging technique, ProFL. 
    more » « less
  2. A large body of research efforts have been dedicated to automated software debugging, including both automated fault localization and program repair. However, existing fault localization techniques have limited effectiveness on real-world software systems while even the most advanced program repair techniques can only fix a small ratio of real-world bugs. Although fault localization and program repair are inherently connected, their only existing connection in the literature is that program repair techniques usually use off-the-shelf fault localization techniques (e.g., Ochiai) to determine the potential candidate statements/elements for patching. In this work, we propose the unified debugging approach to unify the two areas in the other direction for the first time, i.e., can program repair in turn help with fault localization? In this way, we not only open a new dimension for more powerful fault localization, but also extend the application scope of program repair to all possible bugs (not only the bugs that can be directly automatically fixed). We have designed ProFL to leverage patch-execution results (from program repair) as the feedback information for fault localization. The experimental results on the widely used Defects4J benchmark show that the basic ProFL can already at least localize 37.61% more bugs within Top-1 than state-of-the-art spectrum and mutation based fault localization. Furthermore, ProFL can boost state-of-the-art fault localization via both unsupervised and supervised learning. Meanwhile, we have demonstrated ProFL's effectiveness under different settings and through a case study within Alipay, a popular online payment system with over 1 billion global users. 
    more » « less
  3. Automated program repair holds the potential to significantly reduce software maintenance effort and cost. However, recent studies have shown that it often produces low-quality patches that repair some but break other functionality. We hypothesize that producing patches by replacing likely faulty regions of code with semantically-similar code fragments, and doing so at a higher level of granularity than prior approaches can better capture abstraction and the intended specification, and can improve repair quality. We create SOSRepair, an automated program repair technique that uses semantic code search to replace candidate buggy code regions with behaviorally-similar (but not identical) code written by humans. SOSRepair is the first such technique to scale to real-world defects in real-world systems. On a subset of the ManyBugs benchmark of such defects, SOSRepair produces patches for 23 (35%) of the 65 defects, including 3, 5, and 8 defects for which previous state-of-the-art techniques Angelix, Prophet, and GenProg do not, respectively. On these 23 defects, SOSRepair produces more patches (8, 35%) that pass all independent tests than the prior techniques. We demonstrate a relationship between patch granularity and the ability to produce patches that pass all independent tests. We then show that fault localization precision is a key factor in SOSRepair's success. Manually improving fault localization allows SOSRepair to patch 24 (37%) defects, of which 16 (67%) pass all independent tests. We conclude that (1) higher-granularity, semantic-based patches can improve patch quality, (2) semantic search is promising for producing high-quality real-world defect repairs, (3) research in fault localization can significantly improve the quality of program repair techniques, and (4) semi-automated approaches in which developers suggest fix locations may produce high-quality patches. 
    more » « less
  4. null (Ed.)
    Progress in high-performance computing (HPC) systems has led to complex applications that stress the I/O subsystem by creating vast amounts of data. Lossy compression reduces data size considerably, but a single error renders lossy compressed data unusable. This sensitivity stems from the high information content per bit in compressed data and is a critical issue as soft errors that cause bit-flips have become increasingly commonplace in HPC systems. While many works have improved lossy compressor performance, few have sought to address this critical weakness. This paper presents ARC: Automated Resiliency for Compression. Given user-defined constraints on storage, throughput, and resiliency, ARC automatically determines the optimal error-correcting code (ECC) configuration before encoding data. We conduct an extensive fault injection study to fully understand the effects of soft errors on lossy compressed data and how to best protect it. We evaluate ARC's scalability, performance, resiliency, and ease of use. We find on a 40 core node that encoding and decoding demonstrate throughput up to 3730 MB/s and 3602 MB/s. ARC also detects and corrects multi-bit errors with a tunable overhead in terms of storage and throughput. Finally, we display the ease of using ARC and how to consider a systems failure rate when determining the constraints. 
    more » « less
  5. This article presents CirFix, a framework for automatically repairing defects in hardware designs implemented in languages like Verilog. We propose a novel fault localization approach based on assignments to wires and registers, and a fitness function tailored to the hardware domain to bridge the gap between software-level automated program repair and hardware descriptions. We also present a benchmark suite of 32 defect scenarios corresponding to a variety of hardware projects. Overall, CirFix produces plausible repairs for 21/32 and correct repairs for 16/32 of the defect scenarios. Additionally, we evaluate CirFix's fault localization independently through a human study (n=41), and find that the approach may be a beneficial debugging aid for complex multi-line hardware defects. 
    more » « less