skip to main content


Title: Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity
Abstract

Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd‐based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3Sn2phase. Instead, using a thermal quenching method, we prepared a pure‐phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,β‐unsaturated aldehydes, highest in reported Pd‐based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn‐ to Pd3Sn2‐structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity.

 
more » « less
NSF-PAR ID:
10276358
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
133
Issue:
33
ISSN:
0044-8249
Page Range / eLocation ID:
p. 18457-18465
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd‐based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3Sn2phase. Instead, using a thermal quenching method, we prepared a pure‐phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,β‐unsaturated aldehydes, highest in reported Pd‐based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn‐ to Pd3Sn2‐structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity.

     
    more » « less
  2. Abstract

    Dilute alloy CuPt and NiPt catalysts are studied in the hydrogenation of citral, a model α,β‐unsaturated aldehyde.In situandex situcharacterization is used to demonstrate that the Pt species within these nanoparticles are well dispersed and approach a single atom alloy structure. The distribution of Pt varies between the two host metal systems; under a hydrogen environment, the nanoparticle surface and near‐surface region of the NiPt nanoparticles is Pt rich, while the Pt is more uniformly distributed throughout the CuPt nanoparticles. When used for citral hydrogenation reactions, a rate enhancement is observed upon the addition of Pt to the Cu or Ni host catalysts, however this enhancement is determined to be due to the presence of additional metal and not a synergistic effect of the two metals. The Pt structure does, nonetheless, influence the observed selectivity trends. NiPt/SiO2catalysts have high selectivity to the unsaturated aldehyde citronellal while the CuPt/SiO2catalysts have increased selectivity to unsaturated alcohol products. This increased selectivity is attributed to a combination of hydrogen dissociation over Pt sites and a decrease in size of Cu ensembles due to the presence of Pt, which favors binding and hydrogenation of C=O rather than C=C bonds.

     
    more » « less
  3. Precious metals have been shown to play a vital role in the selective hydrogenation of α,β-unsaturated aldehydes, but still suffer from challenges to control selectivity. Herein, we have advanced the design of catalysts made out of Pt–Co intermetallic nanoparticles (IMNs) supported on a MIL-101(Cr) MOF (3%Pt y %Co/MIL-101(Cr)), prepared by using a polyol reduction method, as an effective approach to enhance selectivity toward the production of α,β-unsaturated alcohol, the desired product. XRD, N 2 adsorption–desorption, FTIR spectroscopy, SEM, TEM, XPS, CO adsorption, NH 3 -TPD, XANES and EXAFS measurements were used to investigate the structure and surface properties of our 3%Pt y %Co/MIL-101(Cr) catalysts. It was found that the Co-modified 3%Pt y %Co/MIL-101(Cr) catalysts can indeed improve the hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL), reaching a higher selectivity under mild conditions than the monometallic Pt/MIL-101(Cr) catalysts: 95% conversion of CAL with 91% selectivity to COL can be reached with 3%Pt3%Co/MIL-101(Cr). Additionally, high conversion of furfural (97%) along with high selectivity to furfural alcohol (94%) was also attained with the 3%Pt3%Co/MIL-101(Cr) catalyst. The enhanced activity and selectivity toward the unsaturated alcohols are attributed to the electronic and geometric effects derived from the partial charge transfer between Co and Pt through the formation of uniformly dispersed Pt–Co IMNs. Moreover, various characterization results revealed that the addition of Co to the IMPs can promote the Lewis acid sites that facilitate the polarization of the charge-rich CO bonds and their adsorption via their oxygen atom, and also generate new interfacial acid sites. 
    more » « less
  4. Atomic dispersion of metal catalysts on a substrate accounts for the increased atomic efficiency of single-atom catalysts (SACs) in various catalytic schemes compared to the nanoparticle counterparts. However, lacking neighboring metal sites has been shown to deteriorate the catalytic performance of SACs in a few industrially important reactions, such as dehalogenation, CO oxidation, and hydrogenation. Metal ensemble catalysts (M n ), an extended concept to SACs, have emerged as a promising alternative to overcome such limitation. Inspired by the fact that the performance of fully isolated SACs can be enhanced by tailoring their coordination environment (CE), we here evaluate whether the CE of M n can also be manipulated in order to enhance their catalytic activity. We synthesized a set of Pd ensembles (Pd n ) on doped graphene supports (Pd n /X-graphene where X = O, S, B, and N). We found that introducing S and N onto oxidized graphene modifies the first shell of Pd n converting Pd–O to Pd–S and Pd–N, respectively. We further found that the B dopant significantly affected the electronic structure of Pd n by serving as an electron donor in the second shell. We examined the performance of Pd n /X-graphene toward selective reductive catalysis, such as bromate reduction, brominated organic hydrogenation, and aqueous-phase CO 2 reduction. We observed that Pd n /N-graphene exhibited superior performance by lowering the activation energy of the rate-limiting step, i.e., H 2 dissociation into atomic hydrogen. The results collectively suggest controlling the CE of SACs in an ensemble configuration is a viable strategy to optimize and enhance their catalytic performance. 
    more » « less
  5. Abstract

    Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L‐cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L‐Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L‐Cys)mnanoclusters supported on the reducible metal oxides CeO2, TiO2and Fe3O4exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand‐protected clusters Pdn(L‐Cys)mis observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand‐protected Pd nanoclusters where the L‐cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub‐2‐nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L‐cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand‐protected clusters. However, for the TiO2and Fe3O4supports, complete removal of the ligands from the Pdn(L‐Cys)mclusters leads to a slight decrease in activity where the T100%CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2and Fe3O4supports appears to aid in efficient encapsulation of the bare Pdnnanoclusters within the mesoporous pores of the support.

     
    more » « less