Introduction: Myocardial fibrosis and dysfunction is one of the major cardiac complications of long-term diabetes. Prolonged hyperglycemia is known to induce myocardial dysfunction often leading up to heart failure. Hypothesis: The objective of this study was to investigate the cardioprotective effect of glycyrrhizin (GLC) on myocardial damage in engineered in-vitro human cardiac tissues. Engineered 3D tissue chips present an ideal microenvironment via therapeutically relevant interfaces to study molecular- and cellular-level events and mimic human-specific disease states, and identify new therapeutic targets in vitro. Methods: AC16 human cardiomyocyte cells were used to 3D bioprint cardiac tissue chips based on prior published work. In our study, the 3D bioprinted cardiac tissue chips (CTC) were cultured using normo- (5mM) and hyper-glycemic (25mM) conditions for up to 48 hrs. For the GLC treatment group, a subset of CTC cultured using hyperglycemic conditions were treated with 50 mM of GLC for 24 hours. Results: CTC cultured under hyperglycemic conditions demonstrated altered levels of connexin-43 (CX43) and Troponin-I implying cardiomyocyte injury. Exposure to hyperglycemia revealed changes in epigenetic markers: histone methylation marker (H3K9me)-1, Sirtuin-1, and Histone Deacetylase (HDAC)-2 as well as in inflammatory and stress related mediators such as heat shock protein (HSP)-60, receptor for advanced glycation end products (RAGE), toll like receptor (TLR)-4, high mobility group box (HMGB)-1 and CXC chemokine receptor (CXCR)-4. CTC exposed to 25mM glucose for 24 hours resulted in the downregulation of HSP60 and Sirtuin-1. Prolonged exposure to hyperglycemia led to decrease in the expression of CX43 and CXCR4; thereby adversely affecting cardiomyocyte function. Upregulated expression of DNA-binding nuclear protein HMGB1 along with changes in H3K9me1 indicated long-term hyperglycemia-induced damage to cardiomyocytes. GLC treated CTC exhibited a decrease in the expression of RAGE, TLR4 and also demonstrated altered expression of CX43, CXCR4, and troponin I. Conclusions: This study suggests that GLC possesses cardioprotective effects in human cardiomyocytes exposed to prolonged hyperglycemia.
more »
« less
A 3D Bioprinted Human Cardiac Cell Platform to Model the Pathophysiology of Diabetes
Type-II diabetes (T2D) patients affected by underlying hyperglycemic (high glucose/blood sugar) conditions often suffer from cardiac atrophy, resulting in tissue mass reduction and debilitating cardiac health. To understand pathophysiological mechanisms during progression of cardiac atrophy, a 3D bioprinted organoid platform was developed from a mixture of hydrogels containing human cardiac cells, including cardiomyocytes (CM), fibroblasts (CF) and endothelial cells (EC), to mimic the functionality of the in-vivo tissue. The organoids were cultured using normoglycemic- or hyperglycemic-conditions. The expression of essential biomarkers in these organoids, for myocardin (Myocd), troponin-I (TRP-I), fibroblast protein-1 (FSP-1) and endothelin-1 (ET-1) was confirmed. To assess the physiological cellular connections during hyperglycemia, the presence of Connexin-43 (CX-43) was assessed in the presence of a CX-43 blocker, gap26. Epigenomic tools were used to simultaneously interrogate histone-modifications by histone 3 lysine 9 mono-methylation (H3K9me1) along with the co-regulation of inflammatory mediators, such as the high mobility group box 1 (HMGB1) and toll like receptor 4 (TLR4) in the cardiac organoids cultured using normal versus hyperglycemic conditions. Organoids exposed to high glucose showed an increased expression of H3K9me1 as well as inflammatory mediators HMGB1 and TLR4. Hyperglycemia also exhibited alterations in expression of Myocd and FSP-1 in the organoids, compared to normoglycemic conditions. Treatment with gap26 affected the CX-43 expression significantly, in organoids cultured under hyperglycemia suggesting that high glucose conditions associated with prolonged diabetes may lead to compromised CM-CF coupling, essential for maintenance of cardiac functionality. Increased levels of H3K9me1 suggest decreased expression of Myocd, which may lead to CM degeneration. Epigenetic modifications including alterations in histone methylation in regulation of the myocardial genes and gap junction proteins under hyperglycemic conditions, may lead to cardiac atrophy. We expect to establish an actual T2D patient iPSC cell derived cardiac platform, to offer new therapeutic opportunities within the field.
more »
« less
- Award ID(s):
- 1927628
- PAR ID:
- 10276585
- Date Published:
- Journal Name:
- Circulation research
- Volume:
- 127
- Issue:
- S-1
- ISSN:
- 2683-8567
- Page Range / eLocation ID:
- A465-A465
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction: Hyperglycemia-mediated cardiac dysfunction is a critical initiator in the development of vascular complications, which, in turn, leads to cardiac fibrosis. In this study, we investigated the role of the Hippo signaling pathway in cardiomyocytes to study the complex signaling network of YAP1/TAZ on fibrotic and vascular inflammatory mediators in hyperglycemic condition. This in-vitro study demonstrated that YAP1/TAZ signaling is highly activated in the hyperglycemic cardiomyocytes. To further investigate the differentially expressed genes that are related to inflammation and fibrosis, RNA-sequencing studies were employed. Methods: To investigate the effects of hyperglycemia-mediated changes in cardiomyocytes, we used human AC16 cells cultured in-vitro under normoglycemic (5 mM D-Glucose) and hyperglycemic (50 mM D-glucose) conditions. After 24-hours of hyperglycemic insult, cells were collected and processed for RNA-seq studies. Furthermore, we also performed Western Blot analysis to evaluate the protein expression of YAP1/TAZ under hyperglycemia induced stress conditions. Results: Our study showed a significant upregulation of the protein expression of the YAP1/TAZ pathway in hyperglycemic cardiomyocytes. RNA-seq studies revealed differentially expressed genes (DEG) in the hyperglycemic condition in comparison with the normoglycemic condition. Among the extracellular matrix proteins, the following ECM and related markers were significantly upregulated including MMP3, TNC, TGF-beta1 and 2, COL4A1, FN1 and FGF-2. Altered expression of inflammatory mediators included the following markers, IL-6, CXCL10, CXCL12, CCL2 and VEGF-C. In addition, the following transcriptional co-activators were also significantly upregulated, including EPHA2 and MYOCD. Conclusions: This study suggests that changes in YAP1/TAZ signaling increases vascular inflammation in response to hyperglycemia. This also leads to increased expression of inflammatory mediators as shown by our results. Thus, the inhibition of the YAP1/TAZ pathway may prevent and improve hyperglycemia associated vascular damage and inflammation.more » « less
-
Diabetes is a major risk factor for cardiovascular diseases, especially cardiomyopathy, a condition in which the smooth muscles of the heart become thick and rigid, affecting the functioning of cardiomyocytes, the contractile cells of the heart. Uncontrolled elevated glucose levels over time can result in oxidative stress, which could lead to inflammation and altered epigenetic mechanisms. In the current study, we investigated whether hyperglycemia can modify cardiac function by directly affecting these changes in cardiomyocytes. To evaluate the adverse effect of high glucose, we measured the levels of gap junction protein, connexin 43, which is responsible for modulating cardiac electric activities and Troponin I, a part of the troponin complex in the heart muscles, commonly used as cardiac markers of ischemic heart disease. AC16 human cardiomyocyte cells were used in this study. Under hyperglycemic conditions, these cells demonstrated altered levels of connexin 43 and Troponin-I after 24 h of exposure. We also examined hyperglycemia induced changes in epigenetic markers: H3K9me1, Sirtuin-1 (SIRT1), and histone deacetylase (HDAC)-2 as well as in inflammatory and stress-related mediators, such as heat shock protein (HSP)-60, receptor for advanced glycation end products (RAGE), toll-like receptor (TLR)-4, high mobility group box (HMGB)-1 and CXC chemokine receptor (CXCR)-4. Cardiomyocytes exposed to 25mM glucose resulted in the downregulation of HSP60 and SIRT1 after 48 h. We further examined that hyperglycemia mediated the decrease in the gap junction protein CX43, as well as CXC chemokine receptor CXCR4 which may affect the physiological functions of the cardiomyocytes when exposed to high glucose for 24 and 48 h. Upregulated expression of DNA-binding nuclear protein HMGB1, along with changes in histone methylation marker H3K9me1 have demonstrated hyperglycemia-induced damage to cardiomyocyte at 24 h of exposure. Our study established that 24 to 48 h of hyperglycemic exposure could stimulate stress-mediated inflammatory mediators in cardiomyocytes in vitro. These stress-related changes in hyperglycemia-induced cardiomyocytes may further initiate an increase in injury markers which eventually could alter the epigenetic processes. Therefore, epigenetic and inflammatory mechanisms in conjunction with alterations in a downstream signaling pathway could have a direct effect on the functionality of the cardiomyocytes exposed to high glucose during short and long-term exposures.more » « less
-
Diabetic retinopathy is a complex, microvascular disease that impacts millions of working adults each year. High blood glucose levels from Diabetes Mellitus lead to the accumulation of advanced glycation end-products (AGEs), which promote inflammation and the breakdown of the inner blood retinal barrier (iBRB), resulting in vision loss. This study used an in vitro model of hyperglycemia to examine how endothelial cells (ECs) and Müller glia (MG) collectively regulate molecular transport. Changes in cell morphology, the expression of junctional proteins, and the reactive oxygen species (ROS) of ECs and MG were examined when exposed to a hyperglycemic medium containing AGEs. Trans-endothelial resistance (TEER) assays were used to measure the changes in cell barrier resistance in response to hyperglycemic and inflammatory conditions, with and without an anti-VEGF compound. Both of the cell types responded to hyperglycemic conditions with significant changes in the cell area and morphology, the ROS, and the expression of the junctional proteins ZO-1, CX-43, and CD40, as well as the receptor for AGEs. The resistivities of the individual and dual ECs and MG barriers decreased within the hyperglycemia model but were restored to that of basal, normoglycemic levels when treated with anti-VEGF. This study illustrated significant phenotypic responses to an in vitro model of hyperglycemia, as well as significant changes in the expression of the key proteins used for cell–cell communication. The results highlight important, synergistic relationships between the ECs and MG and how they contribute to changes in barrier function in combination with conventional treatments.more » « less
-
Diabetic retinopathy is a leading cause of vision loss in working adults, with disproportionate impact on women with lowered estrogen. Sex hormones and their receptors are significant to neuroprotection of the inner blood-retinal barrier (iBRB), a tissue that regulates transport across the neuroretina and vasculature. Moreover, high glucose levels in diabetes lead to the formation of advanced glycation end products (AGEs), which promote inflammation and iBRB breakdown to result in vision loss. This study examined the effects of supplemental estradiol on cell reactivity and cell barrier resistance within an in vitro model of hyperglycemia. Changes in morphology and expression of reactive oxygen species were examined when cells were exposed to a hyperglycemic medium containing AGEs, with and without supplemental estradiol. Cell morphology was assessed via changes in cell area and cell shape index, while intracellular ROS levels were measured using a ROS-sensitive dye. In addition, trans endothelial resistance (TEER) assays were used to measure changes in cell barrier function in response to hyperglycemic conditions, with and without supplemental estradiol. Results show that ROS levels in Müller glia in hyperglycemic conditions significantly decreased in response to supplemental estradiol. The estradiol further increased the resistivity of Müller glia and endothelial cell barriers cultured in high glucose and AGEs. This project illustrates the restorative effects of estradiol in collective responses of cell barriers formed by endothelial cells and Müller glia.more » « less
An official website of the United States government

