skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Natural and experimental constraints on a flow law for dislocation-dominated creep in wet quartz
We present a flow law for dislocation-dominated creep in wet quartz derived from compiled experimental and field-based rheological data. By integrating the field-based data, including independently calculated strain rates, deformation temperatures, pressures, and differential stresses, we add constraints for dislocation-dominated creep at conditions unattainable in quartz deformation experiments. A Markov Chain Monte Carlo (MCMC) statistical analysis computes internally consistent parameters for the generalized flow law: urn:x-wiley:21699313:media:jgrb54871:jgrb54871-math-0001 = Aσnurn:x-wiley:21699313:media:jgrb54871:jgrb54871-math-0002e−(Q+VP)/RT. From this initial analysis, we identify different effective stress exponents for quartz deformed at confining pressures above and below ∼700 MPa. To minimize the possible effect of confining pressure, compiled data are separated into “low-pressure” (<560 MPa) and “high-pressure” (700–1,600 MPa) groups and reanalyzed using the MCMC approach. The “low-pressure” data set, which is most applicable at midcrustal to lower-crustal confining pressures, yields the following parameters: log(A) = −9.30 ± 0.66 MPa−n−r s−1; n = 3.5 ± 0.2; r = 0.49 ± 0.13; Q = 118 ± 5 kJ mol−1; and V = 2.59 ± 2.45 cm3 mol−1. The “high-pressure” data set produces a different set of parameters: log(A) = −7.90 ± 0.34 MPa−n−r s−1; n = 2.0 ± 0.1; r = 0.49 ± 0.13; Q = 77 ± 8 kJ mol−1; and V = 2.59 ± 2.45 cm3 mol−1. Predicted quartz rheology is compared to other flow laws for dislocation creep; the calibrations presented in this study predict faster strain rates under geological conditions by more than 1 order of magnitude. The change in n at high confining pressure may result from an increase in the activity of grain size sensitive creep.  more » « less
Award ID(s):
1650173
PAR ID:
10276613
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of geophysical research
ISSN:
2156-2202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We performed deformation experiments on dry natural single crystals of magnetite and ilmenite to determine the rheological behavior of these oxide minerals as a function of temperature, orientation, and oxygen fugacity. Samples were deformed at temperatures of 825–1150  $$\,^{\circ }$$ ∘ C to axial strains of up to 15–24% under approximately constant stress conditions up to 120 MPa in a dead-load-type creep rig at ambient pressure in a controlled gas atmosphere. Oxygen fugacity ranged from 10 $$^{-9.4}$$ - 9.4 to 10 $$^{-4}$$ - 4 atm. Ilmenite creep was insensitive to oxygen fugacity, while magnetite displayed a strong, non-monotonic oxygen fugacity dependence, with creep rates varying as $$f_{O_{2}}^{-0.7}$$ f O 2 - 0.7 and $$f_{O_{2}}^{0.4}$$ f O 2 0.4 at more reducing and more oxidizing conditions, respectively. Dislocation creep rates of magnetite single crystals were weakly dependent on crystallographic orientation with stress exponents that varied between 2.8 and 4.3 (mean 3.5 ± 0.4). Magnetite compressed parallel to <100>, <110>, and <111> axes exhibited apparent activation energies of 315±5, 345±30, and 290±5 kJ/mol, respectively. We estimated $${f_O}_2$$ f O 2 -independent magnetite activation energies of 715 ± 150, 725 ± 145, and 690 ± 150 kJ/mol for <100>, <110>, and <111> orientations, respectively, in the region of negative $${f_O}_2$$ f O 2 -dependence. Ilmenite single crystals were compressed parallel, normal, and inclined to the c-axis. Stress exponents of 3.4, 4.3, and 3.9 indicate dislocation creep with activation energies of 420 ± 35, 345 ± 30, and 360 ± 40 kJ/mol, respectively, for these orientations. Mechanical anisotropy in ilmenite is notably higher than in magnetite, as expected from its lower crystal symmetry. Constitutive equations were formulated for ilmenite and magnetite creep. 
    more » « less
  2. Abstract Subduction zone accretionary prisms are commonly modeled as elastic structures where permanent deformation is accommodated by faulting and folding of otherwise elastic materials, yet accretionary prisms may exhibit other deformation styles over relatively short time scales. In this study, we use 6.5‐year (2014–2021) Sentinel‐1 interferometric synthetic aperture radar (InSAR) time‐series of post‐seismic deformation in the Makran accretionary prism of southeast Pakistan to characterize non‐linear viscoelastic deformation within an active accretionary prism on short timescales (months to years). We constructed a series of 3‐D finite‐element models of the Makran subduction zone, including an accretionary prism, and constrained the elastic thickness of the upper wedge and the flow‐law parameters (power‐law exponent, activation enthalpy, and pre‐exponential constant) of the lower wedge through forward model fits to the InSAR time‐series. Our results show that the prism is elastically thin (8–12 km) and the non‐linear viscoelastic relaxation of the deep portions of the prism alone can sufficiently explain the post‐seismic surface deformation. Our best fitting flow‐law parameters (n = 3.76 ± 0.39,Q = 82.2 ± 37.73 kJ mol−1, andA = 10−3.36±4.69) are consistent with triggering of low temperature dislocation creep within fluid‐saturated siliciclastic rocks. We believe that the fluids necessary for this weakening originate from sedimentary underplating and/or the presence the hydrocarbons. The presence of power‐law rheology within the lower wedge impacts the estimated plate coupling and the stress state in the subduction system, with respect to the conventional elastic wedge model, and hence should to be considered in future earthquake cycle models. 
    more » « less
  3. Abstract Icy moons in the outer Solar System likely contain rocky, chondritic interiors, but this material is rarely studied under confining pressure. The contribution of rocky interiors to deformation and heat generation is therefore poorly constrained. We deformed LL6 chondrites at confining pressures ≤100 MPa and quasistatic strain rates. We defined a failure envelope, recorded acoustic emissions (AEs), measured ultrasonic velocities, and retrieved static and dynamic elastic moduli for the experimental conditions. The Young's modulus, which quantifies stiffness, of the chondritic material increased with increasing confining pressure. The material reached its peak strength, which is the maximum supported differential stress (σ1 − σ3), between 40 and 50 MPa confining pressure. Above this 40–50 MPa range of confining pressure, the stiffness increased significantly, while the peak strength dropped. Acoustic emission events associated with brittle deformation mechanisms occurred both during isotropic pressurization (σ1 = σ2 = σ3) as well as at low differential stresses during triaxial deformation (σ1 > σ2 = σ3), during nominally “elastic” deformation, indicating that dissipative processes are likely possible in the rocky interiors of icy moons. These events also occurred less frequently at higher confining pressures. We therefore suggest that the chondritic interiors of icy moons could become less compliant, and possibly less dissipative, as a function of the moons' pressure and size. 
    more » « less
  4. Abstract. We present new models for the activity of iron (γFe) in solid face-centered cubic (fcc) and liquid FePt alloy at high temperature and pressure to facilitate their use as sliding buffer redox sensors under extreme conditions. Numerous experimental studies of γFe in FePt alloy at 100 kPa have produced a wide spread of values. By favoring high-temperature studies that are more likely to have produced equilibrium measurement and excluding experiments for compositions and temperatures that probably encountered ordered or unmixed low-temperature phases, we regress an asymmetric Margules activity–composition model with parameters WFePtfcc=-121.5±2.1 kJ mol−1 and WPtFefcc=-93.3±4.3 kJ mol−1. These values are close to the widely used model of Kessel et al. (2001), but for Pt-rich compositions they predict larger Fe activities and correspondingly more reduced oxygen fugacities. Activity–composition relations in liquid FePt are calibrated from direct measurements of activities and, most sensitively, from the trace of the Fe–Pt liquidus. Together, these yield asymmetric Margules parameters of WFePtliq=-124.5 kJ mol−1 and WPtFeliq=-94.0 kJ mol−1. The effects of pressure on both fcc and liquid FePt alloy are considered from excess-volume relations. Both solid and liquid alloy display significant positive excess volumes of mixing. Extraction of the excess volume of mixing for fcc FePt alloy requires filtering data for ordered low-temperature phases and corrections for the effects of magnetostriction on Fe-rich compositions which exhibit “Invar” behavior. Applied at high temperatures and pressures, both solid and liquid FePt alloys have strongly negative deviations from ideality at low pressure, which become closer to ideal at high pressure. These models provide a provisional basis for the calculation of aFe in high-temperature, high-pressure experiments that, when combined with estimates of aFeO, allow characterization of fO2 under conditions relevant to magma oceans, core formation, and differentiation processes in the lower mantle of Earth or on other terrestrial planets. Improvements in these models require new constraints on the equation of state of FePt fcc alloy and documentation of the high-pressure melting relations in the system Fe–Pt. 
    more » « less
  5. Abstract Dislocation‐based dissipation mechanisms potentially control the viscoelastic response of Earth's upper mantle across a variety of geodynamic contexts, including glacial isostatic adjustment, postseismic creep, and seismic‐wave attenuation. However, there is no consensus on which dislocation‐based, microphysical process controls the viscoelastic behavior of the upper mantle. Although both intergranular (plastic anisotropy) and intragranular (backstress) mechanisms have been proposed, there is currently insufficient laboratory data to discriminate between those mechanisms. Here, we present the results of forced‐oscillation experiments in a deformation‐DIA apparatus at confining pressures of 3–7 GPa and temperatures of 298–1370 K. Our experiments tested the viscoelastic response of polycrystalline olivine—the main constituent of the upper mantle—at stress amplitudes from 70 to 2,800 MPa. Mechanical data are complemented by microstructural analyses of grain size, crystallographic preferred orientation, and dislocation density. We observe amplitude‐ and frequency‐dependent attenuation and modulus relaxation and find that numerical solutions of the backstress model match our results well. Therefore, we argue that interactions among dislocations, rather than intergranular processes (e.g., plastic anisotropy or grain boundary sliding), control the viscoelastic behavior of polycrystalline olivine in our experiments. In addition, we present a linearized version of the constitutive equations of the backstress model and extrapolate it to conditions typical of seismic‐wave propagation in the upper mantle. Our extrapolation demonstrates that the backstress model can explain the magnitude of seismic‐wave attenuation in the upper mantle, although some modification is required to explain the weak frequency dependence of attenuation observed in nature and in previous experimental work. 
    more » « less