skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A Comparative Study of Thermal Aging Effect on the Properties of Silicone-Based and Silicone-Free Thermal Gap Filler Materials
Thermal conductive gap filler materials are used as thermal interface materials (TIMs) in electronic devices due their numerous advantages, such as higher thermal conductivity, ease of use, and conformity. Silicone is a class of synthetic materials based on a polymeric siloxane backbone which is widely used in thermal gap filler materials. In electronic packages, silicone-based thermal gap filler materials are widely used in industries, whereas silicone-free thermal gap filler materials are emerging as new alternatives for numerous electronics applications. Certainly, characterization of these TIMs is of immense importance since it plays a critical role in heat dissipation and long-term reliability of the electronic packages. Insubstantial studies on the effects of various chemical compounds on the properties of silicone-based and silicone-free TIMs has led to this study, which focuses on the effect of thermal aging on the mechanical, thermal, and dielectric properties of silicone-based and silicone-free TIMs and the chemical compounds that cause the changes in properties of these materials. Characterization techniques such as dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and broadband dielectric spectroscopy (BbDS) are used to study the mechanical, thermal, and dielectric characteristics of these TIMs, which will guide towards a better understanding of the applicability and reliability of these TIMs. The experiments demonstrate that upon thermal aging at 125 °C, the silicone-free TIM becomes hard, while silicone-based TIM remains viscoelastic, which indicates its wide applicability to higher temperature applications for a long time. Though silicone-based TIM displays better mechanical and thermal properties at elevated temperatures, dielectric properties indicate low conductivity for silicone-free TIM, which makes it a better candidate for silicone-sensitive applications where higher electric insulation is desired.  more » « less
Award ID(s):
1738811
NSF-PAR ID:
10276620
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Materials
Volume:
14
Issue:
13
ISSN:
1996-1944
Page Range / eLocation ID:
3565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structural components such as printed circuit boards (PCBs) are critical in the thermomechanical reliability assessment of electronic packages. Previous studies have shown that geometric parameters such as thickness and mechanical properties like elastic modulus of PCBs have direct influence on the reliability of electronic packages. Elastic material properties of PCBs are commonly characterized using equipment such as tensile testers and used in computational studies. However, in certain applications viscoelastic material properties are important. Viscoelastic influence on materials is evident when one exceeds the glass transition temperature of materials. Operating conditions or manufacturing conditions such as lamination and soldering may expose components to temperatures that exceed the glass transition temperatures. Knowing the viscoelastic behavior of the different components of electronic packages is important in order to perform accurate reliability assessment and design components such as printed circuit boards (PCBs) that will remain dimensionally stable after the manufacturing process. Previous researchers have used creep and stress relaxation test data to obtain the Prony series terms that represent the viscoelastic behavior and perform analysis. Others have used dynamic mechanical analysis in order to obtain frequency domain master curves that were converted to time domain before obtaining the Prony series terms. In this paper, nonlinear solvers were used on frequency domain master curve results from dynamic mechanical analysis to obtain Prony series terms and perform finite element analysis on the impact of adding viscoelastic properties when performing reliability assessment. The computational study results were used to perform comparative assessment to understand the impact of including viscoelastic behavior in reliability analysis under thermal cycling and drop testing for Wafer Level Chip Scale Packages. 
    more » « less
  2. Abstract

    To fulfill the demands of more bandwidth in 5G and 6G communication technology, new dielectric substrates that can be co‐fired into packages and devices that have low dielectric loss and improved thermal conductivity are desired. The motivation for this study is to design composites with low dielectric loss (tan δ) and high thermal conductivity (κ), while still limiting the electrical conductivity, for microwave applications involving high power and high frequency. This work describes the fabrication of high‐density electroceramic composites with a model dielectric material for cold sintering, namely sodium molybdate (Na2Mo2O7), and fillers with higher thermal conductivity such as hexagonal boron nitride. The physical properties of the composites were characterized as a function of filler vol.%, temperature, and frequency. Understanding the variation in measured properties is achieved through analyzing the respective transport mechanisms.

     
    more » « less
  3. Thermal interface material (TIM) that exists in a liquid state at the service temperature enables efficient heat transfer across two adjacent surfaces in electronic applications. In this work, the thermal conductivities of different phase regions in the Ga-In system at various compositions and temperatures are measured for the first time. A modified comparative cut bar technique is used for the measurement of the thermal conductivities of GaxIn1−x (x = 0, 0.1, 0.214, 0.3, and 0.9) alloys at 40, 60, 80, and 100 °C, the temperatures commonly encountered in consumer electronics. The thermal conductivity of liquid and semi-liquid (liquid + β) Ga-In alloys are higher than most of the TIM’s currently used in consumer electronics. These measured quantities, along with the available experimental data from literature, served as input for the thermal conductivity parameter optimization using the CALPHAD (calculation of phase diagrams) method for pure elements, solution phase, and two-phase region. A set of self-consistent parameters for the description of the thermal conductivity of the Ga-In system is obtained. There is good agreement between the measured and calculated thermal conductivities for all of the phases. Due to their ease of manufacturing and high thermal conductivity, liquid/semi-liquid Ga-In alloys have significant potential for TIM in consumer electronics. 
    more » « less
  4. Abstract

    Gallium‐based liquid metal (LM) composite with metallic fillers is an emerging class of thermal interface materials (TIMs), which are widely applied in electronics and power systems to improve their performance. In situ alloying between gallium and many metallic fillers like copper and silver, however, leads to a deteriorated composite stability. This paper presents an interfacial engineering approach using 3‐chloropropyltriethoxysilane (CPTES) to serve as effective thermal linkers and diffusion barriers at the copper‐gallium oxide interfaces in the LM matrix, achieving an enhancement in both thermal conductivity and stability of the composite. By mixing LM with copper particles modified by CPTES, a thermal conductivity (κ) as high as 65.9 W m−1K−1is achieved. In addition, κ can be tuned by altering the terminal groups of silane molecules, demonstrating the flexibility of this approach. The potential use of such composite as a TIM is also shown in the heat dissipation of a computer central processing unit. While most studies on LM‐based composites enhance the material performance via direct mixing of various fillers, this work provides a different approach to fabricate high‐performance LM‐based composites and may further advance their applications in various areas including thermal management systems, flexible electronics, consumer electronics, and biomedical systems.

     
    more » « less
  5. Abstract

    The data center’s server power density and heat generation have increased exponentially because of the recent, unparalleled rise in the processing and storing of massive amounts of data on a regular basis. One-third of the overall energy used in conventional air-cooled data centers is directed toward cooling information technology equipment (ITE). The traditional air-cooled data centers must have low air supply temperatures and high air flow rates to support high-performance servers, rendering air cooling inefficient and compelling data center operators to use alternative cooling technology. Due to the direct interaction of dielectric fluids with all the components in the server, single-phase liquid immersion cooling (Sp-LIC) addresses mentioned problems by offering a significantly greater thermal mass and a high percentage of heat dissipation. Sp-LIC is a viable option for hyper-scale, edge, and modular data center applications because, unlike direct-to-chip liquid cooling, it does not call for a complex liquid distribution system configuration and the dielectric liquid can make direct contact with all server components. Immersion cooling is superior to conventional air-cooling technology in terms of thermal energy management however, there have been very few studies on the reliability of such cooling technology. A detailed assessment of the material compatibility of different electronic packaging materials for immersion cooling was required to comprehend their failure modes and reliability. For the mechanical design of electronics, the modulus, and thermal expansion are essential material characteristics. The substrate is a crucial element of an electronic package that has a significant impact on the reliability and failure mechanisms of electronics at both the package and the board level. As per Open Compute Project (OCP) design guidelines for immersion-cooled IT equipment, the traditional material compatibility tests from standards like ASTM 3455 can be used with certain appropriate adjustments. The primary focus of this research is to address two challenges: The first part is to understand the impact of thermal aging on the thermo-mechanical properties of the halogen-free substrate core in the single-phase immersion cooling. Another goal of the study is to comprehend how thermal aging affects the thermo-mechanical characteristics of the substrate core in the air. In this research the substrate core is aged in synthetic hydrocarbon fluid (EC100), Polyalphaolefin 6 (PAO 6), and ambient air for 720 hours each at two different temperatures: 85°C and 125°C and the complex modulus before and after aging are calculated and compared.

     
    more » « less