skip to main content


Title: Numerical Analysis of Oil Immersion Cooling of a Server Using Mineral Oil and Al2O3 Nanofluid
Abstract

Increased demand for computer applications has manifested a rise in data generation, resulting in high Power Density and Heat Generation of servers and their components, requiring efficient thermal management. Due to the low heat carrying capacity of air, air cooling is not an efficient method of data center cooling. Hence, the liquid immersion cooling method has emerged as a prominent method, where the server is directly immersed in a dielectric liquid. The thermal conductivity of the dielectric liquids is drastically increased with the introduction of non-metallic nanoparticles of size between 1 to 150 nm, which has proven to be the best method. To maintain the dielectric feature of the liquid, non-metallic nanoparticles can be added.

Alumina nanoparticles with a mean size of 80 nm and a mass concentration of 0 to 5% with mineral oil are used in the present study. The properties of the mixture were calculated based on the theoretical formula and it was a function of temperature. Heat transfer and effect of the nanoparticle concentration on the junction temperature of the processors using CFD techniques were simulated on an open commute server with two processors in a row. The junction temperature was studied for different flow rates of 0.5, 1, 2, and 3 LPM, at inlet temperatures of 25, 35, and 45 degrees Celsius. The chosen heatsink geometries were: Parallel plate, Pin fin, and Plate fin heatsinks.

 
more » « less
Award ID(s):
1738811
NSF-PAR ID:
10276621
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Miniaturization and high heat flux of power electronic devices have posed a colossal challenge for adequate thermal management. Conventional air-cooling solutions are inadequate for high-performance electronics. Liquid cooling is an alternative solution thanks to the higher specific heat and latent heat associated with the coolants. Liquid-cooled cold plates are typically manufactured by different approaches such as: skived, forged, extrusion, electrical discharge machining. When researchers are facing challenges at creating complex geometries in small spaces, 3D-printing can be a solution. In this paper, a 3D-printed cold plate was designed and characterized with water coolant. The printed metal fin structures were strong enough to undergo pressure from the fluid flow even at high flow rates and small fin structures. A copper block with top surface area of 1 inch by 1 inch was used to mimic a computer chip. Experimental data has good match with a simulation model which was built using commercial software 6SigmaET. Effects of geometry parameters and operating parameters were investigated. Fin diameter was varied from 0.3 mm to 0.5 mm and fin height was maintained at 2 mm. A special manifold was designed to maximize the surface contact area between coolant and metal surface and therefore minimize thermal resistance. The flow rate was varied from 0.75 L/min to 2 L/min and coolant inlet temperature was varied from 25 to 48 oC. It was observed that for the coolant inlet temperature 25 oC and aluminum cold plate, the junction temperature was kept below 63.2 oC at input power 350 W and pressure drop did not exceed 23 Kpa. Effects of metal materials used in 3D-printing on the thermal performance of the cold plate were also studied in detail. 
    more » « less
  2. null (Ed.)
    Abstract

    In today’s world, most data centers have multiple racks with numerous servers in each of them. The high amount of heat dissipation has become the largest server-level cooling problem for the data centers. The higher dissipation required, the higher is the total energy required to run the data center. Although still the most widely used cooling methodology, air cooling has reached its cooling capabilities especially for High-Performance Computing data centers. Liquid-cooled servers have several advantages over their air-cooled counterparts, primarily of which are high thermal mass, lower maintenance. Nano-fluids have been used in the past for improving the thermal efficiency of traditional dielectric coolants in the power electronics and automotive industry. Nanofluids have shown great promise in improving the convective heat transfer properties of the coolants due to a proven increase in thermal conductivity and specific heat capacity.

    The present research investigates the thermal enhancement of the performance of de-ionized water-based dielectric coolant with Copper nanoparticles for a higher heat transfer from the server cold plates. Detailed 3-D modeling of a commercial cold plate is completed and the CFD analysis is done in a commercially available CFD code ANSYS CFX. The obtained results compare the improvement in heat transfer due to improvement in coolant properties with data available in the literature.

     
    more » « less
  3. More than ever before, data centers must deploy robust thermal solutions to adequately host the high-density and high-performance computing that is in high demand. The newer generation of central processing units (CPUs) and graphics processing units (GPUs) has substantially higher thermal power densities than previous generations. In recent years, more data centers rely on liquid cooling for the high-heat processors inside the servers and air cooling for the remaining low-heat information technology equipment. This hybrid cooling approach creates a smaller and more efficient data center. The deployment of direct-to-chip cold plate liquid cooling is one of the mainstream approaches to providing concentrated cooling to targeted processors. In this study, a processor-level experimental setup was developed to evaluate the cooling performance of a novel computer numerical control (CNC) machined nickel-plated impinging cold plate on a 1 in.  1 in. mock heater that represents a functional processing unit. The pressure drop and thermal resistance performance curves of the electroless nickel-plated cold plate are compared to those of a pure copper cold plate. A temperature uniformity analysis is done using compuational fluid dynamics and compared to the actual test data. Finally, the CNC machined pure copper one is compared to other reported cold plates to demonstrate its superiority of the design with respect to the cooling performance. 
    more » « less
  4. Abstract The next radical change in the thermal management of data centers is to shift from conventional cooling methods like air-cooling to direct liquid cooling to enable high thermal mass and corresponding superior cooling. There has been in the past few years a limited adoption of direct liquid cooling in data centers because of its simplicity and high heat dissipation capacity. Single-phase engineered fluid immersion cooling has several other benefits like better server performance, even temperature profile, and higher rack densities and the ability to cool all components in a server without the need for electrical isolation. The reliability aspect of such cooling technology has not been well addressed in the open literature. This paper presents the performance of a fully single-phase dielectric fluid immersed server over wide temperature ranges in an environmental chamber. The server was placed in an environmental chamber and applied extreme temperatures ranging from −20 °C to 10 °C at 100% relative humidity and from 20 to 55 °C at constant 50% relative humidity for extended durations. This work is a first attempt of measuring the performance of a server and other components like pump including flow rate drop, starting trouble, and other potential issues under extreme climatic conditions for a completely liquid-submerged system. Pumping power consumption is directly proportional to the operating cost of a data center. The experiment was carried out until the core temperature reached the maximum junction temperature. This experiment helps to determine the threshold capacity and the robustness of the server for its applications in extreme climatic conditions. 
    more » « less
  5. Modern day data centers are operated at high power for increased power density, maintenance, and cooling which covers almost 2 percent (70 billion kilowatt-hours) of the total energy consumption in the US. IT components and cooling system occupy the major portion of this energy consumption. Although data centers are designed to perform efficiently, cooling the high-density components is still a challenge. So, alternative methods to improve the cooling efficiency has become the drive to reduce the cooling cost. As liquid cooling is more efficient for high specific heat capacity, density, and thermal conductivity, hybrid cooling can offer the advantage of liquid cooling of high heat generating components in the traditional air-cooled servers. In this experiment, a 1U server is equipped with cold plate to cool the CPUs while the rest of the components are cooled by fans. In this study, predictive fan and pump failure analysis are performed which also helps to explore the options for redundancy and to reduce the cooling cost by improving cooling efficiency. Redundancy requires the knowledge of planned and unplanned system failures. As the main heat generating components are cooled by liquid, warm water cooling can be employed to observe the effects of raised inlet conditions in a hybrid cooled server with failure scenarios. The ASHRAE guidance class W4 for liquid cooling is chosen for our experiment to operate in a range from 25°C – 45°C. The experiments are conducted separately for the pump and fan failure scenarios. Computational load of idle, 10%, 30%, 50%, 70% and 98% are applied while powering only one pump and the miniature dry cooler fans are controlled externally to maintain constant inlet temperature of the coolant. As the rest of components such as DIMMs & PCH are cooled by air, maximum utilization for memory is applied while reducing the number fans in each case for fan failure scenario. The components temperatures and power consumption are recorded in each case for performance analysis 
    more » « less