Abstract Robotics researchers have been focusing on developing autonomous and human-like intelligent robots that are able to plan, navigate, manipulate objects, and interact with humans in both static and dynamic environments. These capabilities, however, are usually developed for direct interactions with people in controlled environments, and evaluated primarily in terms of human safety. Consequently, human-robot interaction (HRI) in scenarios with no intervention of technical personnel is under-explored. However, in the future, robots will be deployed in unstructured and unsupervised environments where they will be expected to work unsupervised on tasks which require direct interaction with humans and may not necessarily be collaborative. Developing such robots requires comparing the effectiveness and efficiency of similar design approaches and techniques. Yet, issues regarding the reproducibility of results, comparing different approaches between research groups, and creating challenging milestones to measure performance and development over time make this difficult. Here we discuss the international robotics competition called RoboCup as a benchmark for the progress and open challenges in AI and robotics development. The long term goal of RoboCup is developing a robot soccer team that can win against the world’s best human soccer team by 2050. We selected RoboCup because it requires robots to be able to play with and against humans in unstructured environments, such as uneven fields and natural lighting conditions, and it challenges the known accepted dynamics in HRI. Considering the current state of robotics technology, RoboCup’s goal opens up several open research questions to be addressed by roboticists. In this paper, we (a) summarise the current challenges in robotics by using RoboCup development as an evaluation metric, (b) discuss the state-of-the-art approaches to these challenges and how they currently apply to RoboCup, and (c) present a path for future development in the given areas to meet RoboCup’s goal of having robots play soccer against and with humans by 2050.
more »
« less
The Role of Physics-Based Simulators in Robotics
Physics-based simulation provides an accelerated and safe avenue for developing, verifying, and testing robotic control algorithms and prototype designs. In the quest to leverage machine learning for developing AI-enabled robots, physics-based simulation can generate a wealth of labeled training data in a short amount of time. Physics-based simulation also creates an ideal proving ground for developing intelligent robots that can both learn from their mistakes and be verifiable. This article provides an overview of the use of simulation in robotics, emphasizing how robots (with sensing and actuation components), the environment they operate in, and the humans they interact with are simulated in practice. It concludes with an overview of existing tools for simulation in robotics and a short discussion of aspects that limit the role that simulation plays today in intelligent robot design.
more »
« less
- Award ID(s):
- 1739869
- PAR ID:
- 10276894
- Date Published:
- Journal Name:
- Annual Review of Control, Robotics, and Autonomous Systems
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2573-5144
- Page Range / eLocation ID:
- 35 to 58
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article provides an overview on how modern neuroscience evaluations link to robot empathy. It evaluates the brain correlates of empathy and caregiving, and how they may be related to the higher functions with an emphasis on women. We discuss that the understanding of the brain correlates can inform the development of social robots with enhanced empathy and caregiving abilities. We propose that the availability of these robots will benefit many aspects of the society including transition to parenthood and parenting, in which women are deeply involved in real life and scientific research. We conclude with some of the barriers for women in the field and how robotics and robot empathy research benefits from a broad representation of researchers.more » « less
-
null (Ed.)Recursive neural networks can be trained to serve as a memory for robots to perform intelligent behaviors when localization is not available. This paper develops an approach to convert a spatial map, represented as a scalar field, into a trained memory represented by the long short-term memory (LSTM) neural network. The trained memory can be retrieved through sensor measurements collected by robots to achieve intelligent behaviors, such as tracking level curves in the map. Memory retrieval does not require robot locations. The retrieved information is combined with sensor measurements through a Kalman filter enabled by the LSTM (LSTM-KF). Furthermore, a level curve tracking control law is designed. Simulation results show that the LSTM-KF and the control law are effective to generate level curve tracking behaviors for single-robot and multi-robot teams.more » « less
-
Tensegrity robots, composed of rigid rods and flexible cables, exhibit high strength-to-weight ratios and significant deformations, which enable them to navigate unstructured terrains and survive harsh impacts. They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture. Physics-based simulation is a promising avenue for developing locomotion policies that can be transferred to real robots. Nevertheless, modeling tensegrity robots is a complex task due to a substantial sim2real gap. To address this issue, this paper describes a Real2Sim2Real (R2S2R) strategy for tensegrity robots. This strategy is based on a differentiable physics engine that can be trained given limited data from a real robot. These data include offline measurements of physical properties, such as mass and geometry for various robot components, and the observation of a trajectory using a random control policy. With the data from the real robot, the engine can be iteratively refined and used to discover locomotion policies that are directly transferable to the real robot. Beyond the R2S2R pipeline, key contributions of this work include computing non-zero gradients at contact points, a loss function for matching tensegrity locomotion gaits, and a trajectory segmentation technique that avoids conflicts in gradient evaluation during training. Multiple iterations of the R2S2R process are demonstrated and evaluated on a real 3-bar tensegrity robot.more » « less
-
Tensegrity robots, composed of rigid rods and flexible cables, exhibit high strength-to-weight ratios and significant deformations, which enable them to navigate unstructured terrains and survive harsh impacts. They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture. Physics-based simulation is a promising avenue for developing locomotion policies that can be transferred to real robots. Nevertheless, modeling tensegrity robots is a complex task due to a substantial sim2real gap. To address this issue, this paper describes a Real2Sim2Real (R2S2R) strategy for tensegrity robots. This strategy is based on a differentiable physics engine that can be trained given limited data from a real robot. These data include offline measurements of physical properties, such as mass and geometry for various robot components, and the observation of a trajectory using a random control policy. With the data from the real robot, the engine can be iteratively refined and used to discover locomotion policies that are directly transferable to the real robot. Beyond the R2S2R pipeline, key contributions of this work include computing non-zero gradients at contact points, a loss function for matching tensegrity locomotion gaits, and a trajectory segmentation technique that avoids conflicts in gradient evaluation during training. Multiple iterations of the R2S2R process are demonstrated and evaluated on a real 3-bar tensegrity robot.more » « less
An official website of the United States government

