skip to main content

Title: A Framework for Dyadic Physical Interaction Studies during Ankle Motor Tasks
Over the past few decades, there have been many studies of human-human physical interaction to better understand why humans physically interact so effectively and how dyads outperform individuals in certain motor tasks. Because of the different methodologies and experimental setups in these studies, however, it is difficult to draw general conclusions as to the reasons for this improved performance. In this study, we propose an open-source experimental framework for the systematic study of the effect of human-human interaction, as mediated by robots, at the ankle joint. We also propose a new framework to study various interactive behaviors (i.e., collaborative, cooperative, and competitive tasks) that can be emulated using a virtual spring connecting human pairs. To validate the proposed experimental framework, we perform a transparency analysis, which is closely related to haptic rendering performance. We compare muscle EMG and ankle motion data while subjects are barefoot, attached to the unpowered robot, and attached to the powered robot implementing transparency control. We also validate the performance in rendering a virtual springs covering a range of stiffness values (5-50 Nm/rad) while the subjects track several desired trajectories(sine waves at frequencies between 0.1 and 1.1 Hz). Finally, we study the performance of the system more » in human-human interaction under nine different interactive conditions. Finally, we demonstrate the feasibility of the system in studying human-human interaction under different interactive behaviors. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
2024488
Publication Date:
NSF-PAR ID:
10276956
Journal Name:
IEEE robotics automation letters
ISSN:
2377-3766
Sponsoring Org:
National Science Foundation
More Like this
  1. An important problem in designing human-robot systems is the integration of human intent and performance in the robotic control loop, especially in complex tasks. Bimanual coordination is a complex human behavior that is critical in many fine motor tasks, including robot-assisted surgery. To fully leverage the capabilities of the robot as an intelligent and assistive agent, online recognition of bimanual coordination could be important. Robotic assistance for a suturing task, for example, will be fundamentally different during phases when the suture is wrapped around the instrument (i.e., making a c- loop), than when the ends of the suture are pulled apart. In this study, we develop an online recognition method of bimanual coordination modes (i.e., the directions and symmetries of right and left hand movements) using geometric descriptors of hand motion. We (1) develop this framework based on ideal trajectories obtained during virtual 2D bimanual path following tasks performed by human subjects operating Geomagic Touch haptic devices, (2) test the offline recognition accuracy of bi- manual direction and symmetry from human subject movement trials, and (3) evalaute how the framework can be used to characterize 3D trajectories of the da Vinci Surgical System’s surgeon-side manipulators during bimanual surgical training tasks.more »In the human subject trials, our geometric bimanual movement classification accuracy was 92.3% for movement direction (i.e., hands moving together, parallel, or away) and 86.0% for symmetry (e.g., mirror or point symmetry). We also show that this approach can be used for online classification of different bimanual coordination modes during needle transfer, making a C loop, and suture pulling gestures on the da Vinci system, with results matching the expected modes. Finally, we discuss how these online estimates are sensitive to task environment factors and surgeon expertise, and thus inspire future work that could leverage adaptive control strategies to enhance user skill during robot-assisted surgery.« less
  2. Electrocardiography (ECG) is the process of recording the electrical activity of the human heart over time using electrodes that are placed over the skin. While the primary usage of electrocardiograms, the recorded signals, has been focused on the check of signs of heart-related diseases, recent studies have moved also toward their usage for human authentication. Thus, an ECG signal can be unique enough to be used independently as a biometric modality. In addition to its inherent liveness detection, it is easy to collect and can be easily captured either via sensors attached to the human body (fingertips, chest, wrist) or even passively using wireless sensors. In this paper, we propose a novel approach that exploits the spectro-temporal dynamic characteristics of the ECG signal to establish personal recognition system using both short-time Fourier transform (STFT) and generalized Morse wavelets (CWT). This process results in enriching the information extracted from the original ECG signal that is inserted in a 2D convolutional neural network (CNN) which extracts higher level and subject-specific ECG-based features for each individual. To validate our proposed CNN model, we performed nested cross-validation using eight different ECG databases. These databases are considered challenging since they include both normal and abnormalmore »heartbeats as well as a dynamic number of subjects. Our proposed algorithms yield superior performance when compared to other state-ofart approaches discussed in the literature, i.e. the STFT-based one achieves an average identification rate, equal error rate (EER), and area under curve (AUC) of 97.86%, 0.0268, and 0.9933 respectively, whereas the CWT achieves comparable to STFT results in 97.5%, 0.0386, and 0.9882 respectively.« less
  3. The primary goal of an assist-as-needed (AAN) controller is to maximize subjects' active participation during motor training tasks while allowing moderate tracking errors to encourage human learning of a target movement. Impedance control is typically employed by AAN controllers to create a compliant force-field around the desired motion trajectory. To accommodate different individuals with varying motor abilities, most of the existing AAN controllers require extensive manual tuning of the control parameters, resulting in a tedious and time-consuming process. In this paper, we propose a reinforcement learning AAN controller that can autonomously reshape the force-field in real-time based on subjects' training performances. The use of action-dependent heuristic dynamic programming enables a model-free implementation of the proposed controller. To experimentally validate the controller, a group of healthy individuals participated in a gait training session wherein they were asked to learn a modified gait pattern with the help of a powered ankle-foot orthosis. Results indicated the potential of the proposed control strategy for robot-assisted gait training.
  4. Physical interaction with tools is ubiquitous in functional activities of daily living. While tool use is considered a hallmark of human behavior, how humans control such physical interactions is still poorly understood. When humans perform a motor task, it is commonly suggested that the central nervous system coordinates the musculo-skeletal system to minimize muscle effort. In this paper, we tested if this notion holds true for motor tasks that involve physical interaction. Specifically, we investigated whether humans minimize muscle forces to control physical interaction with a circular kinematic constraint. Using a simplified arm model, we derived three predictions for how humans should behave if they were minimizing muscular effort to perform the task. First, we predicted that subjects would exert workless, radial forces on the constraint. Second, we predicted that the muscles would be deactivated when they could not contribute to work. Third, we predicted that when moving very slowly along the constraint, the pattern of muscle activity would not differ between clockwise (CW) and counterclockwise (CCW) motions. To test these predictions, we instructed human subjects to move a robot handle around a virtual, circular constraint at a constant tangential velocity. To reduce the effect of forces that might arisemore »from incomplete compensation of neuro-musculo-skeletal dynamics, the target tangential speed was set to an extremely slow pace (~1 revolution every 13.3 seconds). Ultimately, the results of human experiment did not support the predictions derived from our model of minimizing muscular effort. While subjects did exert workless forces, they did not deactivate muscles as predicted. Furthermore, muscle activation patterns differed between CW and CCW motions about the constraint. These findings demonstrate that minimizing muscle effort is not a significant factor in human performance of this constrained-motion task. Instead, the central nervous system likely prioritizes reducing other costs, such as computational effort, over muscle effort to control physical interactions.« less
  5. Physical interaction with tools is ubiquitous in functional activities of daily living. While tool use is considered a hallmark of human behavior, how humans control such physical interactions is still poorly understood. When humans perform a motor task, it is commonly suggested that the central nervous system coordinates the musculo-skeletal system to minimize muscle effort. In this paper, we tested if this notion holds true for motor tasks that involve physical interaction. Specifically, we investigated whether humans minimize muscle forces to control physical interaction with a circular kinematic constraint. Using a simplified arm model, we derived three predictions for how humans should behave if they were minimizing muscular effort to perform the task. First, we predicted that subjects would exert workless, radial forces on the constraint. Second, we predicted that the muscles would be deactivated when they could not contribute to work. Third, we predicted that when moving very slowly along the constraint, the pattern of muscle activity would not differ between clockwise (CW) and counterclockwise (CCW) motions. To test these predictions, we instructed human subjects to move a robot handle around a virtual, circular constraint at a constant tangential velocity. To reduce the effect of forces that might arisemore »from incomplete compensation of neuro-musculo-skeletal dynamics, the target tangential speed was set to an extremely slow pace (~1 revolution every 13.3 seconds). Ultimately, the results of human experiment did not support the predictions derived from our model of minimizing muscular effort. While subjects did exert workless forces, they did not deactivate muscles as predicted. Furthermore, muscle activation patterns differed between CW and CCW motions about the constraint. These findings demonstrate that minimizing muscle effort is not a significant factor in human performance of this constrained-motion task. Instead, the central nervous system likely prioritizes reducing other costs, such as computational effort, over muscle effort to control physical interactions.« less