skip to main content


Search for: All records

Award ID contains: 2007492

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 4, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Conversational recommender systems (CRS) dynamically obtain the users' preferences via multi-turn questions and answers. The existing CRS solutions are widely dominated by deep reinforcement learning algorithms. However, deep reinforcement learning methods are often criticized for lacking interpretability and requiring a large amount of training data to perform.In this paper, we explore a simpler alternative and propose a decision tree based solution to CRS. The underlying challenge in CRS is that the same item can be described differently by different users. We show that decision trees are sufficient to characterize the interactions between users and items, and solve the key challenges in multi-turn CRS: namely which questions to ask, how to rank the candidate items, when to recommend, and how to handle user's negative feedback on the recommendations. Firstly, the training of decision trees enables us to find questions which effectively narrow down the search space. Secondly, by learning embeddings for each item and tree nodes, the candidate items can be ranked based on their similarity to the conversation context encoded by the tree nodes. Thirdly, the diversity of items associated with each tree node allows us to develop an early stopping strategy to decide when to make recommendations. Fourthly, when the user rejects a recommendation, we adaptively choose the next decision tree to improve subsequent questions and recommendations. Extensive experiments on three publicly available benchmark CRS datasets show that our approach provides significant improvement to the state of the art CRS methods. 
    more » « less
  4. We propose a differentially private linear contextual bandit algorithm, via a tree-based mechanism to add Laplace or Gaussian noise to model parameters. Our key insight is that as the model converges during online update, the global sensitivity of its parameters shrinks over time (thus named dynamic global sensitivity). Compared with existing solutions, our dynamic global sensitivity analysis allows us to inject less noise to obtain $(\epsilon, \delta)$-differential privacy with added regret caused by noise injection in $\tilde O(\log{T}\sqrt{T}/\epsilon)$. We provide a rigorous theoretical analysis over the amount of noise added via dynamic global sensitivity and the corresponding upper regret bound of our proposed algorithm. Experimental results on both synthetic and real-world datasets confirmed the algorithm's advantage against existing solutions. 
    more » « less
  5. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesvari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    In real-world recommendation problems, especially those with a formidably large item space, users have to gradually learn to estimate the utility of any fresh recommendations from their experience about previously consumed items. This in turn affects their interaction dynamics with the system and can invalidate previous algorithms built on the omniscient user assumption. In this paper, we formalize a model to capture such ā€learning usersā€ and design an efficient system-side learning solution, coined Noise-Robust Active Ellipsoid Search (RAES), to confront the challenges brought by the non-stationary feedback from such a learning user. Interestingly, we prove that the regret of RAES deteriorates gracefully as the convergence rate of user learning becomes worse, until reaching linear regret when the userā€™s learning fails to converge. Experiments on synthetic datasets demonstrate the strength of RAES for such a contemporaneous system-user learning problem. Our study provides a novel perspective on modeling the feedback loop in recommendation problems. 
    more » « less
  6. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesvari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    We study adversarial attacks on linear stochastic bandits: by manipulating the rewards, an adversary aims to control the behaviour of the bandit algorithm. Perhaps surprisingly, we first show that some attack goals can never be achieved. This is in a sharp contrast to context-free stochastic bandits, and is intrinsically due to the correlation among arms in linear stochastic bandits. Motivated by this finding, this paper studies the attackability of a $k$-armed linear bandit environment. We first provide a complete necessity and sufficiency characterization of attackability based on the geometry of the armsā€™ context vectors. We then propose a two-stage attack method against LinUCB and Robust Phase Elimination. The method first asserts whether the given environment is attackable; and if yes, it poisons the rewards to force the algorithm to pull a target arm linear times using only a sublinear cost. Numerical experiments further validate the effectiveness and cost-efficiency of the proposed attack method. 
    more » « less