skip to main content


Title: Misinterpreting Others and the Fragility of Social Learning
We exhibit a natural environment, social learning among heterogeneous agents, where even slight misperceptions can have a large negative impact on long‐run learning outcomes. We consider a population of agents who obtain information about the state of the world both from initial private signals and by observing a random sample of other agents' actions over time, where agents' actions depend not only on their beliefs about the state but also on their idiosyncratic types (e.g., tastes or risk attitudes). When agents are correct about the type distribution in the population, they learn the true state in the long run. By contrast, we show, first, that even arbitrarily small amounts of misperception about the type distribution can generate extreme breakdowns of information aggregation, where in the long run all agents incorrectly assign probability 1 to some fixed state of the world, regardless of the true underlying state. Second, any misperception of the type distribution leads long‐run beliefs and behavior to vary only coarsely with the state, and we provide systematic predictions for how the nature of misperception shapes these coarse long‐run outcomes. Third, we show that how fragile information aggregation is against misperception depends on the richness of agents' payoff‐relevant uncertainty; a design implication is that information aggregation can be improved by simplifying agents' learning environment. The key feature behind our findings is that agents' belief‐updating becomes “decoupled” from the true state over time. We point to other environments where this feature is present and leads to similar fragility results.  more » « less
Award ID(s):
1824324
NSF-PAR ID:
10278674
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Econometrica
Volume:
88
Issue:
6
ISSN:
0012-9682
Page Range / eLocation ID:
2281 to 2328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We develop a model of social learning from complementary information: short-lived agents sequentially choose from a large set of flexibly correlated information sources for prediction of an unknown state, and information is passed down across periods. Will the community collectively acquire the best kinds of information? Long-run outcomes fall into one of two cases: (i) efficient information aggregation, where the community eventually learns as fast as possible; (ii) “learning traps,” where the community gets stuck observing suboptimal sources and information aggregation is inefficient. Our main results identify a simple property of the underlying informational complementarities that determines which occurs. In both regimes, we characterize which sources are observed in the long run and how often. 
    more » « less
  2. Altafini, Claudio ; Como, Giacomo ; Hendrickx, Julien M. ; Olshevsky, Alexander ; Tahbez-Salehi, Alireza (Ed.)
    We study a social learning model in which agents iteratively update their beliefs about the true state of the world using private signals and the beliefs of other agents in a non-Bayesian manner. Some agents are stubborn, meaning they attempt to convince others of an erroneous true state (modeling fake news). We show that while agents learn the true state on short timescales, they "forget" it and believe the erroneous state to be true on longer timescales. Using these results, we devise strategies for seeding stubborn agents so as to disrupt learning, which outperform intuitive heuristics and give novel insights regarding vulnerabilities in social learning. 
    more » « less
  3. In multi-agent domains (MADs), an agent's action may not just change the world and the agent's knowledge and beliefs about the world, but also may change other agents' knowledge and beliefs about the world and their knowledge and beliefs about other agents' knowledge and beliefs about the world. The goals of an agent in a multi-agent world may involve manipulating the knowledge and beliefs of other agents' and again, not just their knowledge/belief about the world, but also their knowledge about other agents' knowledge about the world. Our goal is to present an action language (mA+) that has the necessary features to address the above aspects in representing and RAC in MADs. mA+ allows the representation of and reasoning about different types of actions that an agent can perform in a domain where many other agents might be present -- such as world-altering actions, sensing actions, and announcement/communication actions. It also allows the specification of agents' dynamic awareness of action occurrences which has future implications on what agents' know about the world and other agents' knowledge about the world. mA+ considers three different types of awareness: full-, partial- awareness, and complete oblivion of an action occurrence and its effects. This keeps the language simple, yet powerful enough to address a large variety of knowledge manipulation scenarios in MADs. The semantics of mA+ relies on the notion of state, which is described by a pointed Kripke model and is used to encode the agent's knowledge and the real state of the world. It is defined by a transition function that maps pairs of actions and states into sets of states. We illustrate properties of the action theories, including properties that guarantee finiteness of the set of initial states and their practical implementability. Finally, we relate mA+ to other related formalisms that contribute to RAC in MADs. 
    more » « less
  4. Abstract We develop a novel bounded rationality model of imperfect reasoning as the interaction between automatic (System 1) and analytical (System 2) thinking. In doing so, we formalize the empirical consensus of cognitive psychology using a structural, constrained-optimal economic framework of mental information acquisition about the unknown optimal policy function. A key result is that agents reason less (more) when facing usual (unusual) states of the world, producing state- and history-dependent behavior. Our application is an otherwise standard incomplete-markets model with no a priori behavioral biases. The ergodic distribution of actions and beliefs is characterized by endogenous learning traps, where locally stable state dynamics generate familiar regions of the state space within which behavior appears to follow memory-based heuristics. This results in endogenous behavioral biases that have many empirically desirable properties: the marginal propensity to consume is high even for unconstrained agents, hand-to-mouth status is more frequent and persistent, and there is more wealth inequality than in the standard model. 
    more » « less
  5. We describe a methodology for making counterfactual predictions in settings where the information held by strategic agents and the distribution of payoff-relevant states of the world are unknown. The analyst observes behavior assumed to be rationalized by a Bayesian model, in which agents maximize expected utility, given partial and differential information about the state. A counterfactual prediction is desired about behavior in another strategic setting, under the hypothesis that the distribution of the state and agents’ information about the state are held fixed. When the data and the desired counterfactual prediction pertain to environments with finitely many states, players, and actions, the counterfactual prediction is described by finitely many linear inequalities, even though the latent parameter, the information structure, is infinite dimensional. (JEL D44, D82, D83) 
    more » « less