The sustainability of agriculture depends as much on the natural resources required for production as it does on the stakeholders that manage those resources. It is thus essential to understand the variables that influence the decision-making process of agricultural stakeholders to design educational programs, interventions, and policies geared towards their specific needs, a required step to enhance agricultural sustainability. This study employed a survey of multiple-choice and open-ended questions to examine the perceptions, experiences, and priorities that influence management decisions of agricultural stakeholders across Montana, United States. A total of 272 respondents completed a survey, representing five distinct agricultural stakeholder groups: 103 (34.9%) conventional producers, 78 (28.7%) consultants, 37 (13.6%) researchers, 33 (12.1%) organic grain producers, and 21 (7.7%) organic vegetable producers. The results revealed that, while stakeholder groups have distinct perceptions, experiences, and priorities, there were similarities across groups (pseudo-F = 22.92, p = 0.001). Specifically, organic vegetable and organic small-grain producers showed similar responses that were, in turn, divergent from those of conventional producers, researchers, and crop consultants. Conventional small-grain producers and researchers showed overlapping response patterns, while crop consultants formed an isolated group. Six clusters resulting from the classification of the multiple-choice response dataset associated with specific agricultural professions (χ2 = 549.72, p = 0.001). The classification of open-ended questions that assessed agronomic challenges and research needs resulted in six distinctive clusters, with specific associations between clusters and agricultural stakeholder groups (χ2 = 164.41, p = 0.001). These results reinforce the need for agricultural education and programs that address unique and shared experiences, priorities, and concerns of multiple stakeholder groups. This study endorses the call for a paradigm shift from the traditional top-down agricultural extension model to one that accounts for participants’ socio-ecological contexts to facilitate the adoption of sustainable agricultural systems that support environmental and human wellbeing.
more »
« less
Scalar Mismatches and Underlying Factors for Underutilization of Climate Information: Perspectives From Farmers and Ranchers
Growing demand for water resources coupled with climate-driven water scarcity and variability present critical challenges to agriculture in the Western US. Despite extensive resources allocated to downscaling climate projections and advances in understanding past, current, and future climatic conditions, climate information is underutilized in decisions made by agricultural producers. Climate information providers need to understand why this information is underutilized and what would better meet the needs of producers. To better understand how agricultural producers perceive and utilize climate information, we conducted five focus groups with farmers and ranchers across Montana. Focus groups revealed that there are fundamental scalar issues (spatial and temporal) that make climate information challenging for producers to use. While climate information is typically produced at regional, national, or global spatial scales and at a seasonal and mid- to end-of-century temporal scales, producers indicated that decision-making takes place at multiple intermediate and small temporal and spatial scales. In addition, producers described other drivers of decision-making that have little to do with climate information itself, but rather aspects of source credibility, past experience, trust in information, and the politics of climate change. Through engaging directly with end-users, climate information providers can better understand the spatial and temporal scales that align with different types of agricultural producers and decisions, as well as the limitations of information provision given the complexity of the decision context. Increased engagement between climate information providers and end-users can also address the important tradeoffs that exist between scale and uncertainty.
more »
« less
- PAR ID:
- 10278951
- Date Published:
- Journal Name:
- Frontiers in Climate
- Volume:
- 3
- ISSN:
- 2624-9553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change presents huge challenges to the already-complex decisions faced by U.S. agricultural producers, as seasonal weather patterns increasingly deviate from historical tendencies. Under USDA funding, a transdisciplinary team of researchers, extension experts, educators, and stakeholders is developing a climate decision support Dashboard for Agricultural Water use and Nutrient management (DAWN) to provide Corn Belt farmers with better predictive information. DAWN’s goal is to provide credible, usable information to support decisions by creating infrastructure to make subseasonal-to-seasonal forecasts accessible. DAWN uses an integrated approach to 1) engage stakeholders to coproduce a decision support and information delivery system; 2) build a coupled modeling system to represent and transfer holistic systems knowledge into effective tools; 3) produce reliable forecasts to help stakeholders optimize crop productivity and environmental quality; and 4) integrate research and extension into experiential, transdisciplinary education. This article presents DAWN’s framework for integrating climate–agriculture research, extension, and education to bridge science and service. We also present key challenges to the creation and delivery of decision support, specifically in infrastructure development, coproduction and trust building with stakeholders, product design, effective communication, and moving tools toward use.more » « less
-
What would it look like? Visualizing a future US Corn Belt landscape with more table food productionAbstract Most farmland in the US Corn Belt is used to grow row crops at large scales (e.g., corn, soybean) that are highly processed before entering the human food stream rather than specialty crops grown in smaller areas and meant for direct human consumption (table food). Bolstering local table food production close to urban populations in this region through peri-urban agriculture (PUA) could enhance sustainability and resilience. Understanding factors influencing PUA producers' preferences and willingness to produce table food would enable supportive planning and policy efforts. This study combined land use visualization and survey data to examine the potential for increased local table food production for the US Corn Belt. We developed a spatial visualization of current agricultural land use and a future scenario with increased table food production designed to meet 50% of dietary requirements for a metropolitan population in 2050. A survey was administered to row crop (1360) and specialty crop (55) producers near Des Moines, Iowa, US to understand current and intended agricultural land use and factors influencing production. Responses from 316 row crop and 25 specialty crop producers were eligible for this analysis. A future scenario with increased table food production would require less than 3% of available agricultural land and some additional producers (approximately 130, primarily for grain production). Survey responses indicated PUA producers planned small increases in table food production in the next three to five years. Producer plans, including land rental for table food production, could provide approximately 25% of residents' fruit, vegetables, and grains, an increase from the baseline of 2%. Row crop producers ranked food safety regulations, and specialty producers ranked labor concerns as strong influences on their decision-making. Both groups indicated that crop insurance and processing facilities were also important. Increasing table food production by clustering mid-scale operations to increase economies of scale and strengthening supply chains and production infrastructure could provide new profitable opportunities for farmers and more resilient food systems for growing urban regions in the US Corn Belt. Continuing to address producer factors and landscape-scale environmental impacts will be critical in considering food system sustainability challenges holistically.more » « less
-
null (Ed.)Aim: Research regarding decisions patients make about total knee arthroplasty, apart from having the procedure or not, are limited. Understanding patient decision making and related information needs is essential for shared decision making. Methods: Focus groups with an online community-based sample identified decisions about total knee arthroplasty beyond the decision to have the surgery itself. An online survey was used to determine relative importance of five major decisions and evaluate related information available. Results: Patients did not feel they have enough information to make important decisions of surgeon, device type, surgical approach, facility, or timing, for their total knee arthroplasty. Conclusion: Although further research is needed to generalize these findings, physicians should consider these questions during shared decision making with patients considering total knee arthroplasty.more » « less
-
Emergency medical services (EMS) providers often face significant challenges in their work, including collecting, integrating, and making sense of a variety of information. Despite their criticality, EMS work is one of the very few medical domains with limited technical support. To design and implement effective decision support, it is essential to examine and gain a holistic understanding of the fine-grained process of sensemaking in the field. To that end, we reviewed 25 video recordings of EMS simulations to understand the nuances of EMS sensemaking work, including 1) the types of information and situation that are collected and made sense of in the field; 2) the work practices and temporal patterns of EMS sensemaking work; and 3) the challenges in EMS sensemaking and decision-making process. Based on the results, we discuss implications for technology opportunities to support rapid information acquisition and sensemaking in time-critical, high-risk medical settings such as EMS.more » « less